LabVIEW™ Core 3
Exercises

Course Software Version 2009
April 2010 Edition
Part Number 325511A-01

Copyright

© 2004-2010 National Instruments Corporation. All rights reserved.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the UsTCopyrights.chm or the Copyrights topic in your software.
Xerces C++. This product includes software that was developed by the Apache Software Foundation (http: / /www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995-2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of lllinois. All rights reserved.

b64. Copyright © 2004-2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995-2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999-2003 Boris Fomitchev

Trademarks

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
onni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents. txt file on your media, or the National Instruments Patent Notice at ni . com/legal /patents.



Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway  Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511,

France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277,

Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10,

Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00,

South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151,

Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni . com/info and enter the info code feedback.



Contents

Student Guide
AL NI CertifiCation ........ooviiuiiiiiiiiiiiicicceee e v
B. Course DESCIIPHON ....eiiuiiiiiiiiiiiieiie ettt sttt st vi
C. What You Need to Get Started ..........c.eeeviieriiiiiiiiieniieeieeeeeeeeeeee e vi
D. Installing the Course SOftWare.........cccveeriiieiiieeiieeeeeeice e vii
E. CoUrSe GOAIS .......coiiiiiiiiiiee ettt vii
F. CoUrse CONVENTIONS ......viiiiiiiiiiieiiiie ettt ettt ettt e st e st sibeeesib e ebaeeeas viil
Lesson 2
Analyzing the Project
Exercise 2-1  Analyze a Requirements Document .............cccoeevuveeriiieeniieenieennnenn. 2-1
Lesson 3
Designing the User Interface
Exercise 3-1  User-Interface Design Techniques ...........cccoceevieiiiiiiiniceicenienen. 3-1
Lesson 4
Designing the Project
Exercise 4-1  User Event Techniques.........ccccoociiiiiiiiiiiininiceecceeeceen 4-1
Exercise 4-2  Using the LabVIEW Project.......cccooocveevviieeiiieiiiicieeciee e 4-7
Exercise 4-3  Using Project Explorer TOOIS ........ccccoiiiiiiiiiiiiiiicieicceeee 4-8
Exercise 4-4  Choose Data TYPES.....ccceeveiriiiniiniiiiienieeeeeeeeeseeeeeeee e 4-14
Exercise 4-5  Information Hiding.........ccoeeeriiiiiiiieiiieeiieeieeeeeee e 4-17
Exercise 4-6  Design an Error Handling Strategy ...........ccooeevieiiiiiiinieiiceniceen. 4-25
Lesson 5
Implementing the User Interface
Exercise 5-1  Implement User Interface-Based Data Types......c.cccocvevveeviienncnnen. 5-1
Exercise 5-2  Implement a Meaningful ICON ..........ccoevviieeiiiiniiiiiiecieceeee 5-5
Exercise 5-3  Implement an Appropriate Connector Pane ............cccccoeceeeieeniennen. 5-7
Lesson 6
Implementing Code
Exercise 6-1  Implement the Design Pattern ..........cccccooceeviiniiininiiinciieecnee 6-1
EXErcise 6-2  TIMINE .oeeeiiiiiiieeeiieeeiie ettt ettt et e e e e aneeenaaee s 6-14
Exercise 6-3  Implement Code ..........occooiiiiiiiiiiiiieiiieeeceee e 6-18
Exercise 6-4  Implement Error Handling Strategy ..........ccoocveeviiiiniiieniieeniieeneen. 6-27

© MNational Instruments Corporation i LabVIEW Core 3 Exercises



Contents

Lesson 7
Implementing a Test Plan
Exercise 7-1  Integrate Initialize and Shutdown Functions...........c.cccceceeevieenncnnen. 7-1
Exercise 7-2  Integrate Display Module..........cccceeeviieiiiieniiiiniieeeiieeeieeeeee e 7-6
Exercise 7-3  Integrate Record FUNCtion ............ccccooiiiiiiiiiiiieniiieeccceeeeen 7-12
Exercise 7-4  Integrate Play FUNCHON.........c.coiviiiiiiiiiiiiieiceee e 7-17
Exercise 7-5  Integrate Error Module............coociiiiiiiiniiiiiiiiieeece e 7-24
Exercise 7-6  Stress and Load TeSting.......c.ccceeveeiienieniieinieniieecneeeecee e 7-29
Exercise 7-7  Self Study: Integrate Save and Load Functions ..........c.c.cccecueevnneenn. 7-31
Exercise 7-8  Self Study: Integrate Stop FUnction ..........ccccceveviiviiiiniiiiiniiecienns 7-37
Lesson 8
Evaluating VI Performance
Exercise 8-1  Identify VI Issues with VI MEIIICS ....c..covvirviiiniieiiiiiiniecieecieeene 8-1
Exercise 8-2 ~ Methods of Updating Indicators............cccceeevvuieeniieeniiieeniieinieeeeenn 8-2
Lesson 9
Implementing Documentation
Exercise 9-1  Document User Interface..........cc.oocueeviiniiiiiiniiiniiiiiiiciceecen 9-1
Exercise 9-2  Implement Documentation .............cccoveervieenieniienieniieeneeeieeieeneen 9-3
Lesson 10
Deploying the Application
Exercise 10-1 Implementing Code for Stand-Alone Applications............ccccceueen. 10-1
Exercise 10-2 Create a Stand-Alone Application...........ccceeeveeeeiveeniiieenieeeenieeeineenn 10-6
Exercise 10-3  Self-Study: Create an Installer...........cc.coceviiininiiniiiniiiicee 10-8
Appendix A

Additional Information and Resources

Course Evaluation

LabVIEW Core 3 Exercises iv ni.com



Student Guide

@ Note

Thank you for purchasing the LabVIEW Core 3 course kit. This course
manual and the accompanying software are used in the three-day, hands-on
LabVIEW Core 3 course.

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. Visit ni . com/training to register for a course and to
access course schedules, syllabi, and training center location information.

For course and exercise manual updates and corrections, refer to ni.com/info

and enter the info code core3.

A. NI Certification

The LabVIEW Core 3 course is part of a series of courses designed to build
your proficiency with LabVIEW and help you prepare for exams to become
an NI Certified LabVIEW Developer and NI Certified LabVIEW Architect.
The following illustration shows the courses that are part of the LabVIEW
training series. Refer to ni.com/training for more information about
NI Certification.

Courses

New User

Experienced User Advanced User

LabVIEW Core 1*
LabVIEW Core 2*

LabVIEW Core 3* Managing Software

Engineering in LabVIEW

LabVIEW OOP System Design

Advanced Architectures
in LabVIEW

Certifications

Certified LabVIEW
Associate Developer Exam

Certified LabVIEW
Developer Exam

B

Certified LabVIEW
Architect Exam

Other Courses

;

LabVIEW Instrument Control
LabVIEW Machine Vision
LabVIEW Real-Time

LabVIEW FPGA

Modular Instruments Series

LabVIEW Connectivity
LabVIEW Performance

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

© MNational Instruments Corporation

LabVIEW Core 3 Exercises




Student Guide

B. Course Description

The LabVIEW Core 3 course teaches you four fundamental areas of
software development in LabVIEW—design, implement, test, and deploy.
By the end of the LabVIEW Core 3 course, you will be able to produce a
LabVIEW application that uses good programming practices and is easy to
scale, easy to read, and easy to maintain. As a result, you should be able to
more effectively develop software with LabVIEW.

This course assumes that you have taken the LabVIEW Core I and
LabVIEW Core 2 courses or have equivalent experience.

This course kit is designed to be completed in sequence. The course and
exercise manuals are divided into lessons, described as follows.

In the course manual, each lesson consists of the following:

* An introduction that describes the purpose of the lesson and what you
will learn

* A discussion of the topics in the lesson

* A summary quiz that tests and reinforces important concepts and skills
taught in the lesson

In the exercise manual, each lesson consists of the following:

* A set of exercises to reinforce the topics in the lesson

* Some lessons include optional and challenge exercise sections or
additional exercises to complete if time permits

@ Note The exercises in this course are cumulative and lead toward developing a final
application at the end of the course. If you skip an exercise, use the solution VI for that
exercise, available in the <Solutions>\LabVIEW Core 3 directory, in later exercises.

C. What You Need to Get Started

LabVIEW Core 3 Exercises

Before you use this course manual, make sure you have the following items:

O Windows 2000 or later installed on your computer; this course is
optimized for Windows XP

O LabVIEW Professional Development System 2009 or later

vi ni.com



Student Guide

U LabVIEW Core 3 course CD, containing the following folders:

Filename Description
Exercises Folder containing VIs and other files used in
the course
Solutions Folder containing completed course exercises

D. Installing the Course Software

Complete the following steps to install the course software.

1.

Insert the course CD in your computer.

2. Follow the prompts to install the course material.

The installer places the Exercises and Solutions folders at the top level
of the root directory. Exercise files are located in the <Exercises>\
LabVIEW Core 3 directory.

@ Tip Folder names in angle brackets, such as <Exercises>, refer to folders in the root
directory of your computer.

E. Course Goals

This course prepares you to:

© MNational Instruments Corporation

Establish a software lifecycle for future project development
Communicate with customers during project definition

Develop professional user interfaces

Develop applications that are scalable, readable, and maintainable
Investigate and implement techniques for timing a VI

Handle errors that may occur during code execution

Document VIs effectively

vii LabVIEW Core 3 Exercises



Student Guide

F. Course Conventions

»

@7 (&)

bold

italic

monospace

LabVIEW Core 3 Exercises

The following conventions are used in this course manual:

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to pull
down the File menu, select the Page Setup item, and select Options from
the last dialog box.

This icon denotes a tip, which alerts you to advisory information.
This icon denotes a note, which alerts you to important information.

Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

vili ni.com



Analyzing the Project

Exercise 2-1 Analyze a Requirements Document
Goal

Assess a requirements document that is based on a software requirements
document specification.

Scenario

You work with a Certified LabVIEW Architect to develop a requirements
document. You develop the requirements document after researching
commercially available theatre light control software and analyzing the
specifications document. You must analyze the requirements document to
ensure that it is complete and accurate.

Implementation

Analyze the requirements document for the Theatre Light Control Software.

Read the following requirements document to gain an understanding of the
software you create in this course.

Many organizations use their own techniques to create a requirements
document. If your organization is not using a format for a requirements
document, you can use this requirements document as a basis for other
requirements documents. Refer to the IEEE Requirements Documents
section of Appendix A of the LabVIEW Core 3 Course Manual for another
version of this requirements document.

Start of Requirements Document

Requirements Document
ABC Theatre Inc.

Theatre Light Control Software Specifications

Document Number—ILV 100975

© National Instruments Corporation 2-1 LabVIEW Core 3 Exercises



Lesson2  Analyzing the Project

Requirements Document Continued

LabVIEW Core 3 Exercises

Section I: General Requirements
The application should do the following:

Function as specified in Section II: Application Requirements of this
document.

Conform to LabVIEW coding style and documentation standards. Refer
to the Development Guidelines topic of the LabVIEW Help for more
information about the LabVIEW style checklist and creating
documentation.

Be hierarchical in nature. All major functions should be performed in
subVls.

Use a state machine that manages states with a type-defined enumerated
type control, a queue, or an Event structure.

Be easily scalable, enabling the addition of more states and/or features
without having to manually update the hierarchy.

Minimize the excessive use of structures, local and/or global variables,
and Property Nodes.

Respond to front panel controls within 100 ms and not utilize 100% of
CPU time.

Close all opened references and handles.

Be well documented and include the following:

— Labels on appropriate wires within the main VI and subVIs.
— Descriptions for each algorithm.

— Documentation in VI Properties»Documentation for the main
VI and subVIs.

— Tip strips and descriptions for each front panel control and indicator.

— Labels for constants.

Section II: Application Requirements

Introduction

ABC Theatre Lighting Inc. is the largest provider of theatre lighting systems
for major metropolitan theatres worldwide. Theatre light systems must be
scalable for as many lights as a particular production might require. A
software-based theatre light control system allows theatres to scale the
lighting for each production. The control system controls each light
individually. Each light contains its own dimmer and color mixing system.

2-2 ni.com



Lesson 2  Analyzing the Project

Requirements Document Continued

The color mixing system can mix an appropriate amount of red, green, and
blue to define each color. The control software sends signals to a hardware
control system that controls the intensity and color of the lights. The user

interface for the control software should look similar to the following front

panel.
Cue Control Cue Information
Chanrel 0 Chanrel 0 Chanrel 0 Chanrel 0
[‘\] Cue Mame . . . .
Intensity 0 Intensity 0 Inktensity 0 Intensity 0O
Color I Color I Color Color
Wait Time {s)
0 Chanrel 0 Chanrel 0 Chanrel 0 Chanrel 0
Fade Time (s} Intensity 0 Intensity 0 Inktensity 0 Intensity 0O
0 Color Color Color | Color |
Fallow Time () Chanrel 0 Chanrel 0 Chanrel 0 Chanrel 0
0 Intensity 0 Intensity 0 Inktensity 0 Intensity 0O
Color Color Color | Color |
[v] Chanrel 0 Chanrel 0 Chanrel 0 Chanrel 0
Intensity 0 Intensity 0 Intensity 0 Intensity 0O
(> [ ® [ W ] coor NN || cobr NN || Coor NEN | cobr NN
Definitions

This section defines the terminology for the project.

© National Instruments Corporation

Channel—The most basic element of the Theatre Light Control
Application. Each channel corresponds to a physical light.

Intensity—Attribute of the channel that defines the intensity of the
physical light.

Color—Attribute of the channel that defines the color of the channel as
a combination of red, green, and blue.

Cue—A cue contains any number of independent channels with timing
attributes for the channels.

Wait time—A cue timing attribute that defines the amount of time to
wait, in multiples of one second, before the cue fires.

Fade time—A cue timing attribute that defines the time it takes, in
multiples of one second, before a channel reaches its particular intensity
and color.

Follow time—A cue timing attribute that defines the amount of time to
wait, in multiples of one second, before the cue finishes.

2-3 LabVIEW Core 3 Exercises



Lesson2  Analyzing the Project

Requirements Document Continued

LabVIEW Core 3 Exercises

Task

Design, implement, test, and deploy a theatre light control system that
allows a theatre lighting engineer to easily control and program the theatre
lights for any production.

General Operation

Front panel controls determine the operation of the theatre light control
software. Front panel indicators display the current status of the theatre light
control software.

The controller will store the channel intensity, channel color, channel wait
time, channel fade time, channel follow time, and name for the cue when the
user clicks the Record button. When the user clicks the Play button, the
controller services each cue in the Cue Control by cycling through the
recorded cues starting with the first cue in the Cue Control. A cue that is
playing will wait for the specified wait time, then fade the channels to the
desired color and intensity within the specified fade time, and then wait for
the specified follow time. The next cue in the Cue Control loads and the
process repeats, until all of the Cues play. The user can stop a currently
playing cue by clicking the Stop button. The controller exits when the user
selects File»Exit.

Sequence of Operation

Application Run

When the application starts, all the front panel controls must initialize to
their default states. The Cue Control must be cleared to remove all the
recorded Cues. The channels must be initialized with their corresponding
channel number, zero intensity, and the color black.

Record

Click the Record button to activate the cue recording functionality. A
custom panel must open that allows the lighting engineer to set the channel
intensity and color for the channels. The panel must provide for the
capability to name the cue, and specify the wait time, fade time, and the
follow time. The minimum time for the wait time and follow time is zero
seconds. The minimum time for the fade time is one second. The minimum
increment for the wait time, fade time, and follow time is one second.

After a cue is recorded, the cue name is placed into the Cue Control.

24 ni.com



Lesson 2  Analyzing the Project

Requirements Document Continued

Play

Click the Play button to play the recorded cues. When the play begins, the
controller should disable the Record button and the Cue List. The values of
the first cue in the cue list are loaded into memory. The controller waits
based on the number of seconds specified for the wait time for the current
cue. The controller then fades the channel up or down based on the current
channel intensity and the desired channel intensity. The software writes the
color and intensity to the theatre lighting hardware control system, and
updates the front panel channels. The controller must finish fading within
the specified fade time. The controller will finish processing the cue by
waiting for the number of seconds specified for the follow time of the
current cue. When the play is complete, the controller should enable the
Record button and the Cue List.

Stop
Click the Stop button to stop a currently playing cue. The operation is
ignored if a cue is not playing.

Save

Select File»Save to save all of the recorded cues in a file for later playback.
The user specifies the filename.

Open
Select File»Open to open a file that contains recorded cues. The user
specifies the filename.

Exit
Select File»Exit to exit the application. If an error has occurred in the
application, the application reports the errors.

Description of Controls and Indicators

Control Name Control Description—Function

Cue List Listbox—Stores a list of recorded cues that the
user can select

Play Boolean—Plays the recorded cues

Record Boolean—Opens a dialog box that allows the user
to specify and record channel attributes

Stop Boolean—Stops a currently playing cue

© National Instruments Corporation 2-5 LabVIEW Core 3 Exercises



Lesson2  Analyzing the Project

Requirements Document Continued

Indicator Name Indicator Description—Function
Cue Name String—Displays the name of the current cue
Wait Time Numeric—Displays the number of seconds of the

recorded cue wait time

Fade Time Numeric—Displays the number of seconds of the
recorded cue fade time

Follow Time Numeric—Displays the number of seconds of the
recorded cue follow time

Channel Cluster—Record that contains the channel
number, channel intensity, and channel color

Scalability

Many of the newer theatre lights systems provide motor control to move the
light around the stage. The Theatre Light Control Software should provide
for the ability to easily implement channel pan and tilt. The software should
be easily scalable to control any number of channels.

Documentation

The application documentation should address the needs of the end user and
a programmer who might modify the application in the future.

Deliverables
The project includes the following deliverables:
*  Documented source code

* Documentation that describes the system

Timeline

The project has the following timeline for completion:
e Day 1—User Interface prototype completed

» Day 2—Application modules completed

e Day 3—Fully functional application

End of Requirements Document

LabVIEW Core 3 Exercises 2-6 ni.com



Lesson 2  Analyzing the Project
Use the following Requirements Document Checklist to ensure the
requirements document is complete and adequate.
U Each requirement is clear and understandable.
U Each requirement has a single, clear, unambiguous meaning.

U The requirements explain every functional behavior of the software
system.

U The requirements do not contradict each other.
U The requirements are correct and do not specify invalid behavior.

U Each requirement is testable.

End of Exercise 2-1

© National Instruments Corporation 2-7 LabVIEW Core 3 Exercises



Lesson2  Analyzing the Project

Notes

LabVIEW Core 3 Exercises 2-8 ni.com



Designing the User Interface

Exercise 3-1  User-Interface Design Techniques
Goal

Learn techniques you can use to create professional user interfaces in
LabVIEW.

Description

LabVIEW includes features that allow you to create professional user
interfaces. Learn techniques to remove borders from clusters, create custom
cursors, create custom toolbars, and use the transparency property to
enhance the user’s experience with your application.

Implementation

Creating Transparent Cluster Borders

Clusters group data elements of mixed types. However, sometimes you do
not want the user to know that you have organized the data into a cluster. The
clusters from the Modern palette visually indicate that the data is stored in
a container, however, you can modify a cluster from the Classic palette to

conceal the fact that data is organized in a cluster.

1. Open a blank VI

2. Create a cluster from the Classic palette and make the borders of the
cluster transparent.

Tip If the Controls palette is not visible, select View»Controls Palette to display the
palette.

(D)

(&)

Tip You can use the Search button to find controls, VIs, or functions. On the Controls
or Functions palette, click the Search button on the palette toolbar. In the text field at the
top of the search dialog, start typing the name of the control, VI, or function you want to
find. As you type, the listbox shows all possible matches. When you find the control, VI,
or function you are looking for, double-click its name. This opens the palette where the
control, VI, or function is located and flashes the icon whose name you just
double-clicked.

O Add a cluster from the Classic palette to the front panel.

© National Instruments Corporation 3-1 LabVIEW Core 3 Exercises



Lesson 3  Designing the User Interface

@ Tip Select Tools»Options, select Block Diagram from the Category list, and remove
= the checkmark from the Place front panels terminals as icons checkbox to match the
examples in the manual.

U Click a blank area of the front panel with the Get Color tool to copy
the color of the front panel to the foreground and background colors
the Coloring tool uses.

@ Tip If the Tools palette is not visible, select View»Tools Palette to display the palette.

Q Select the Coloring tool. In the Coloring tool section of the Tools
palette, click the top left (foreground) color block to open the color
picker.

Q Click T in the upper right corner of the color picker to change the
foreground color to transparent.

U Click the border of the cluster with the Coloring tool as shown in
Figure 3-1 to make the cluster border transparent.

Clusker

m]’
S| 2

Figure 3-1. Transparent Cluster Borders

You can use this technique with other controls from the Classic
palette. The controls from the Classic palette are easier to modify
and customize than controls from the Modern palette.

To make the border of a Modern control transparent, select the
Coloring tool and right-click the border of the control to open the
color picker. With the color picker open, press the space bar to
toggle the color selection to the foreground. Click T in the upper
right corner of the color picker to change the foreground color to
transparent.

3. Save the VI as Transparent Cluster Borders.vi in the
<Exercises>\LabVIEW Core 3\User Interface Design
Techniques directory.

4. Close the VI.

LabVIEW Core 3 Exercises 3-2 ni.com



Lesson 3 Designing the User Interface

Creating Custom Cursors

You can change the appearance of front panel cursors for a VI. LabVIEW
provides tools that allow you to use system cursors, or even define your own
custom cursors. Changing the appearance of the cursor in your application
provides visual cues to the user on the status of the application. For example,
if your application is busy processing data you can programmatically set the
cursor to busy while the processing occurs to let the user know that the
application is processing. Create a simple VI to test the cursor functionality.

1. Create a VI that contains a While Loop and the Set Cursor VI to change
the appearance of the cursor as shown in Figure 3-2.

0N St Cursor.vi
B
Wait (ms)
100 stop
m . .......

Figure 3-2. VI to Change the Cursor
O Open a blank VI.
U Add a While Loop to the block diagram.

U Right-click the loop conditional terminal and select Create»
Control from the shortcut menu to create a stop button for the VI.

U Add a Wait (ms) function inside the While Loop, and set the wait to
a reasonable amount, such as 100 ms.

O Add the Set Cursor VI from the Cursor palette to the While Loop.

U Right-click the icon input of the Set Cursor VI and select Create»
Control from the shortcut menu.

2. Save the VI as Custom Cursors.vi in the <Exercises>\
LabVIEW Core 3\User Interface Design Technigues
directory.

3. Switch to the front panel and run the VI.
U Change the icon in the icon ring while the VI runs.

4. Close the VI.

© National Instruments Corporation 3-3 LabVIEW Core 3 Exercises



Lesson 3  Designing the User Interface

Creating Custom Toolbars

Many professional applications include custom toolbars. Providing a
toolbar for your application increases the usability of your application.
You can use a splitter bar to create a custom toolbar.

To create a toolbar at the top of your VI, add a Horizontal Splitter Bar to the
front panel and add a set of controls to the upper pane. Right-click the
splitter bar and select the following items from the shortcut menu to
configure the splitter bar as a toolbar:

* Select Locked and Splitter Sizing»Splitter Sticks Top to lock the
splitter bar in position.

* Select Upper Pane»Horizontal Scrollbar»Always Off and Upper
Pane» Vertical Scrollbar»Always Off to hide the upper scrollbars of
the pane.

You also can paint the pane and resize the splitter so that it blends seamlessly
with the menu bar. You can scroll the scrollbars of the lower pane or split the
lower pane further without affecting the toolbar controls. Figure 3-3 shows
examples of custom toolbars.

Fnew,.. Cyopen.. [Hsave

m *Add Camponent... | - 1Select Waveform Subset Taal | /F4Zoom In Todl o Zoom out Toal

= add Step %0 Undo £Run = RunOnce g Reset Al h.ﬂdd Display |

Oed ¢ rr

LabVIEW Core 3 Exercises

Figure 3-3. Custom Toolbar Examples

Complete the following steps to implement the simple custom toolbar
shown in Figure 3-4.

b= 2 =&

Figure 3-4. Custom Word Processor Toolbar
1. Open a blank VL.

2. Add a Horizontal Splitter Bar from the Containers palette to the front
panel. Position the splitter bar near the top of the VI. Leave enough
space above the bar to add the menu controls.

3. To turn off the scrollbars, right-click the splitter bar and select Upper
Pane»Horizontal Scrollbar»Always Off and Upper Pane» Vertical
Scrollbar»Always Off from the shortcut menu.

34 ni.com



Lesson 3 Designing the User Interface

4. To change the style of the splitter bar to system, right-click the splitter
bar and select Splitter Style»System from the shortcut menu.

5. Add the toolbar controls from the <Exercises>\LabVIEW Core 3\
User Interface Design Techniques\Toolbar Controls
directory to the upper pane created by the splitter bar.

6. Rearrange the controls and color the splitter bar to look like a toolbar.
U Hide the labels for the controls.

U Use the Align Objects and Distribute Objects buttons on the
toolbar to align and distribute the controls.

U Color the background of the pane to blend the controls into the
panel.

— Click the background color block of the Coloring tool to open
the color picker.

: — Click the More Colors button in the bottom right corner of the
- color picker to open the Color dialog box.

— Enter the following values and click OK to set the background
color:

Red: 231
Green: 223

Blue: 231
— Click the background of the splitter bar pane to change the color.

7. To lock the splitter bar so that the user cannot move it, right-click the
splitter bar and make sure Locked is checked in the shortcut menu.

8. Save the VI as Custom Toolbars.vi in the <Exercises>\
LabVIEW Core 3\User Interface Design Techniques
directory.

9. Close the VI.

Creating Transparent Controls

You can use transparent controls to make the user interface more
professional. Modify an existing VI that uses a Tank indicator to display
fluid levels. To obtain the current value of the Tank, the user must click the
Tank. To modify this VI, place a Boolean control on top of the Tank
indicator and change the colors of the Boolean control to transparent.

© National Instruments Corporation 3-5 LabVIEW Core 3 Exercises



Lesson 3 Designing the User Interface

LabVIEW Core 3 Exercises

1.

Add a Boolean button to the existing Tank Value VI.

U Open Tank Value.vi from the <Exercises>\LabVIEW
Core 3\User Interface Design Techniques directory.

U Add a Flat Square button from the Classic palette and position it on
top of the Tank. Resize the control to completely cover the Tank and
hide the label of the control.

Modify the button to make it transparent.

O Use the Coloring tool to change the True and False color of the
button to transparent.

U Click the button with the Operating tool to verify that the button is
transparent whether it is True or False.

Add code to cause Tank Value to update only when the transparent
button is True, as shown in Figure 3-5.

Boolean

Quotient & Remainder Tank Value
Rl i

Tank Wait (s

T stop
_______

Figure 3-5. Tank Value Modification

U Add a Case structure inside the While Loop to enclose the Tank
Value indicator.

U Wire the Boolean control to the case selector terminal.
U Leave the False case empty.
Save the VI.

Run the VI and test the behavior of the VI when you click the Tank
indicator.

6. Stop and close the VI.

End of Exercise 3-1

3-6 ni.com



Lesson 3 Designing the User Interface

Notes

© National Instruments Corporation 3-7 LabVIEW Core 3 Exercises



Lesson 3  Designing the User Interface

Notes

LabVIEW Core 3 Exercises 3-8 ni.com



Designing the Project

Exercise 4-1 User Event Techniques

Goal
Complete a VI that contains a static user interface event and a user event.
Scenario
This VI contains the Fire Event Boolean control that causes an LED to light
when the user clicks the control. In addition, the block diagram contains a
countdown that displays on the slider. When the countdown reaches zero,
it generates a programmatic event that lights the LED.
Design

1. Modify the block diagram to create and generate a user event for the
LED.

2. Configure the Fire Event event case to handle both the Value Change
event on the Fire Event Boolean control and the User event.

@ Note Event-driven programming features are available only in the LabVIEW Full and
Professional Development Systems. You can run a VI built with these features in the
LabVIEW Base Package, but you cannot reconfigure the event-handling components.

Implementation

1. Open User Event.vi from the <Exercises>\LabVIEW Core 3\
User Event Techniques directory. Figure 4-1 and Figure 4-2 show
the front panel and block diagram.

. Fire Event

Programmatic Count Down to Event...

Event Count

ID S5TOP

Figure 4-1. User Event VI Front Panel

© National Instruments Corporation 4-1 LabVIEW Core 3 Exercises



Lesson 4 Designing the Project
User Interface Loop
Initial
Ewvent
Zounk

Skop

Fire Eve

Event Fired!

Iyl

100 loop iterations x 50 ms per
iter ation = 5 seconds bebween
user events.

Loop 1
Qr Stopped

1>+ frE)

Prograrmmatic Loop — Wait {ms)
ms fo wait
aif[]}

40 Totatus |

Loop 1 Stopped 1 Loop 1 Stopped

Programmatic Counk
Down ko Event...

Figure 4-2. User Event VI Block Diagram

Create and Generate User Event

2.

Modify the block diagram to create and generate a user event for the
LED as shown in Figure 4-3. You will add the True state as shown in
Figure 4-3. Wire the user event through the False state.

User Interface Loop
LED'  Create Liser Event
--g &
Register For Events
| E 4 RegEvents _'_'_' """"""
we=r  User Ewvent ™
=
Initial
Event
Zount Event Count
- -
Qr Stopped
M True 't 3
enerate User Event 3
Event Fired! -O|
—

Cuokient & Rermainder

mE

user events,

100 loop iterations x 50 ms per
iteration = 5 seconds between

Programriatic Count
Down ko Event. ..

LabVIEW Core 3 Exercises

Figure 4-3. Create and Generate a User Event for LED

ni.com




i

)

(&)

Lesson 4  Designing the Project

Add a Create User Event function from the Events palette to the
block diagram. This function returns a reference to a user event
when Programmatic Count Down to Event reaches zero.

Add a False constant from the Boolean palette to the block diagram.
Label it LED. Wire the False constant to the user event data type
input of the Create User Event function.

Add a Register For Events node from the Events palette to the block
diagram. Wire the node as shown in Figure 4-3.

Generate the event within the True case of the programmatic loop.

— Add a Generate User Event function from the Events palette to
the block diagram.

— Adda True constant to the block diagram and wire it to the event
data input of the Generate User Event function.

— Wire the Generate User Event function as shown in Figure 4-3.
The True case executes only when the countdown reaches zero.

— Wire the user event reference through the False case of the Case
structure.

Configure Events

3. Create and configure an event case to handle the value change event on
the Fire Event Boolean control and handle the user event.

a

a

Add an Event structure from the Structures palette to the user
interface loop.

Wire the Event Registration Refnum from the Register For Events
node to the dynamic event terminal of the Event structure.

Tip If the dynamic event terminal is not visible, right-click the border of the Event

structure and select Show Dynamic Event Terminals from the shortcut menu.

Q

© MNational Instruments Corporation

Wire the error and Event Count shift registers from the left border of
the User Interface Loop to the left border of the Event structure.

4-3 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

LabVIEW Core 3 Exercises

4. Configure a Fire Event case to handle both the Value Change event on
the Fire Event Boolean control and the user event, as shown in
Figure 4-4.

[=He[0] "Fire Event": ¥alue Chan |

Event Fired!

oo SEFFON

FEwent Count=

Loop
Fire Event  Continug

Figure 4-4. Fire Event Case

Add the Flash LED VI from the <Exercises>\LabVIEW

Core 3\User Event Technigques directory to the event case.
This subVI turns on the LED for 200 ms.

Right-click the Event Fired! terminal and select Create»Reference
from the shortcut menu to create a reference to the indicator.

Wire the Event Fired! reference to the Bool Refnum input of the
Flash LED subVI.

Move the Fire Event Boolean control into the event case so the VI
reads the value of the control when the event executes.

Add an Increment function to the block diagram to increment the
event count within the event case.

Add a False constant to the block diagram. Label it Loop
Continue. Wire the False constant to the right border of the Event
structure.

Right-click the Event structure and select Edit Events Handled
by This Case from the shortcut menu to open the Edit Events
dialog box.

— Select Fire Event from the Event Sources list and select Value
Change from the Events list.

— Click the blue + to add an event.

— Select Dynamic»<LED>:User Event from the Event Sources
list.

— Click OK to complete configuration.

4-4 ni.com



5.

© MNational Instruments Corporation

Lesson 4  Designing the Project

Create and configure the Stop event case to handle the Value Change
event on the Stop Boolean control as shown in Figure 4-5.

a

[EHe[1]"Stop™: value Change =]

------- FEPFON®

=Event Count>

Stop

Figure 4-5. Stop Event Case

Right-click the Event structure and select Add Event Case from the
shortcut menu to open the Edit Events dialog box.

Select Stop from the Event Sources list and Value Change from
the Events list and click OK.

Move the Stop Boolean control into the Stop event case and wire the
control to the right border of the Event structure.

Wire the error and Event Count data through the Stop event case.

Complete the block diagram as shown in Figure 4-6 to stop the User
Interface Loop, release the user event resources, and handle any errors
that have occurred. Use the following items:

a

Unbundle By Name function—Extracts the status Boolean data
from the error cluster. If an error has occurred or the user clicks
Stop, then stop the User Interface Loop.

Unregister For Events function—Releases the resources used to
register the user event.

Merge Errors VI—Combines the error outputs from both loops into
a single error output.

Destroy User Event function—Releases the resources that were
allocated for the user event.

Simple Error Handler VI—Communicates error information to the
user.

4-5 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

User Interface Loop]

LED_ Create User Event ZHA[[[1] "Fire Event": Yalue Chan ¥
L]
Reqister For Events )
- ﬂ % Reg Events 5[ ! Unregister For Events
_User Event 7] sl By B
v} o RPN X
Initial E tatus
Evert »Event Count»
<ounk Ewent Count
=
Loop 1
L
Fire Event CUD?'EinuE Oor Stopped

Walk (ms)
ol
Drestroy

; J User Event  Simple Error Handler wi
Ewent Fired!
o Quotient, & Remaindsr

§ —— i
= stats E Merae Ervars.vi
[lLoop 1 Stopped]| ‘ loop L stopeed]|

Programmatic Count

100 loop terations x 50 ms per Tiowan b Eviert.

iteration = 5 seconds between
user events.

Figure 4-6. Completed User Event VI Block Diagram
7. Save the VL.

Testing

1. Run the VI. Try to generate a user interface event at the same time as a
programmatic event. Does the VI record both events?

2. Close the VI.

End of Exercise 4-1

LabVIEW Core 3 Exercises 4-6 ni.com




Lesson 4  Designing the Project

Exercise 4-2  Using the LabVIEW Project

Goal
Create a LabVIEW project for the application.

Scenario
Every large LabVIEW development needs to use a project to control naming
and project hierarchy. Using the LabVIEW Project simplifies the
development of larger applications.

Design

Create a LabVIEW project that includes folders for modules and controls.
Save the project as TLC . lvproj in the <Exercises>\LabVIEW
Core 3\Course Project directory.

Implementation
1. Create a new project.

U Select FilexNew Project to open the Project Explorer window.

2. Create virtual folders for modules and controls in the My Computer
hierarchy. You use these virtual folders later in the course.

U Right-click My Computer in the LabVIEW Project and select
New» Virtual Folder from the shortcut menu to create a new virtual
folder.

O Name the virtual folder Modules.
O Repeat the previous steps to create the Controls virtual folder.

3. Save the project as TLC . lvproj in the <Exercises>\LabVIEW
Core 3\Course Project directory.

4. Close the project.

End of Exercise 4-2

© National Instruments Corporation 4-7 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

Exercise 4-3
Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Using Project Explorer Tools

Use the Project Explorer tools to resolve conflicts and manage files in a
LabVIEW project.

Conlflicts can arise within a LabVIEW project if top-level VIs are calling
incorrect versions of nested code. Applications that are saved in multiple
locations as a result of archiving, backup, or division of work can lead to the
use of incorrect code and broken applications.

In this exercise, you examine a LabVIEW project that contains conflicts and
use the tools in the Project Explorer to resolve the conflicts and manage
the project.

The project in this exercise contains the following conflicts:

e Two VIs within the project have the same name, Generate
Signal.vi.

e A VlIin the project calls a subVI outside the project that has the same
name, Log to File.vi, as a VI within the project.

Part I: Resolving Conflicts
1. Explore a LabVIEW Project containing conflicts.

U Open Conflicts.lvproj inthe <Exercises>\Project
Explorer Tools directory.

U Expand Sine Wave, Square Wave, File 10, and Dependencies
in the project tree, as shown in Figure 4-7.

Notice that LabVIEW has determined that various VIs have
conflicts. A conflict is a potential cross-link that occurs when
LabVIEW tries to load a VI that has the same qualified name as an
item already in the project. When there is a conflict, it is unclear
which VI a calling VI should reference.

4-8 ni.com



U U 0o U

Q

Lesson 4  Designing the Project

i3 Project Explorer - Conflicts.lvproj g@

File Edit View Project Operate Tools \Window Help

[EEIE IECY=ESEY

Items | Files

= E;l, Project: Conflicks. lvproj
3. B My Computer

2 [ Sine Wave
gi} Generate Signal.vi [Conflict]
- [ Sguare Wave
ggﬁs Generate Signal.vi [Conflict]
3. [ Filelo
i G [mf® Log ko File.vi [Conflict]
I;Q, Create and Save Signal.wi
<. 9 Dependencies
Do) vidb

. ‘:,] Iwanlys.dl

- I;gk Log ko File.wvi [Caonflict]

"%, Build Specfications

Figure 4-7. LabVIEW Project with Conflicts
Double-click Generate Signal.vi in the Sine Wave virtual folder.
Run the VI and observe that this VI generates a sine wave.
Close the VI.

Double-click Generate Signal.vi in the Square Wave virtual
folder.

Run the VI and observe that this VI generates a square wave.

Close the VI.

2. View the file paths of the items in the project tree.

a

(&)

In the Project Explorer window, select Project»Show Item Paths.

Tip The best way to determine if cross-linking exists is to view the full path to the item.

Viewing filepaths is often the first step when attempting to resolve conflicts that are
caused by cross-linking. You can attempt to rename or move files as needed, but first you
must determine which file is the correct file. Enabling Show Item Paths displays the file
locations in a second column in the Project Explorer window.

You can resolve project conflicts from the Resolve Project Conflicts dialog
box, but in this exercise you practice additional techniques to resolve
conflicts.

© MNational Instruments Corporation

4-9 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

3. Determine which VIs in the project call the conflicting VIs.

Q

Right-click Generate Signal.vi in the Sine Wave virtual folder and
select Find»Callers from the shortcut menu. In the project tree,
LabVIEW highlights the Create and Save Signal VI because it calls
this VI as a subVL.

Right-click Generate Signal.vi in the Square Wave virtual folder
and select Find»Callers from the shortcut menu. Notice that this VI
has no callers in the project. However, it is inadvisable to delete this
VI because it performs a unique function. Renaming one or both
files is a more appropriate action.

4. Manually rename the conflicting files.

a

a

In the Sine Wave folder, right-click Generate Signal.vi and
select Rename.

Rename the VI Sine Wave - Generate Signal.vi and
click OK.

LabVIEW prompts you to save the changes made to the calling VI,
Create and Save Signal.vi, to preserve the links. Click Save.

In the Square Wave folder, right-click Generate Signal.vi and
select Rename.

Rename the VI Square Wave - Generate Signal.vi and
click OK.

@ Note You also can rename files from the Files page view of the project.

LabVIEW Core 3 Exercises

5. Resolve a conflict using the Resolve Project Conflicts dialog box.

a

a

Notice that there is copy of Log to File.wvi in the File IO virtual
folder and a copy of Log to File.vi in Dependencies, which
indicates that a file within the project calls the second copy. The
filepaths of these two VlIs are different, as shown in the Paths
section of the Project Explorer window.

Right-click each copy of Log to File.vi and select Find»
Callers to determine which file, if any, within the project calls
each copy.

4-10 ni.com



6.

© MNational Instruments Corporation

Lesson 4  Designing the Project

U Double-click Create and Save Signal.vi in the LabVIEW Project.
The Resolve Load Conflict dialog box appears as shown in
Figure 4-8 and prompts you to select the subVI you want the caller
to reference.

£ Resolve Load Conflict @

Create and Save Signal.vi refers to Log to File.wi, but there are multiple items named Log to File.vi
- : in Conflicts.lvproj or its dependzancies,

Select the ibem to load From the list below,

Conflicting Ikems

Path LabWIEW Version ||
i CiExercisesiLabWIEW Core 31Project Explorer Toolsyworking DirectoryiFile I0Log ko Fils 9.0 |
= CH\Exercises\LabyIEW Core 3\Project Explorer ToolsiBackup DirectoryFile I0iLog to File, 9.0

W
Erawise...

Path: C:hExercisesLab¥IEW Core 3" Project Explorer Tools' Working Directory'File 10,
“HE| LogtoFilevi

Qualified name: Log to File.vi

File created: 1/14,/2010 10:49:49 AM

File modified: 1/14/2010 11:41:30 AM

Dekails for Selected Tkem

[ Load with Selected l[ Cancel ] [ Help

Figure 4-8. Resolve Load Conflict Dialog Box

U In the Resolve Load Conflict dialog box, select the Log to File VI
in Working Directory and click Load with Selected.

U The Load Summary Warning dialog box informs you that the Log
to File subVI was loaded from a different location. Click Show
Details.

U Examine the Load and Save Warning List dialog box. Click Close.
All conflicts in the project should now be resolved.

U The Create and Save Signal VI has unlinked subVIs after resolving
the conflicts. To relink the subVlIs, open the block diagram,
right-click each subVI and select Relink to SubVI from the shortcut
menu.

O Save and close the Create and Save Signal VI.

Save the project.

4-11 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

Part Il: Other File Management Tools

Use auto-populating folders in the project.

a

Q

Right-click the Sine Wave virtual folder in the project tree and
select Convert to Auto-populating Folder from the shortcut menu.

Navigate to the <Exercises>\LabVIEW Core 3\Project
Explorer Tools\Working Directory\Sine Wave directory
and click Current Folder. Notice in the project tree that the Sine
Wave folder icon changes to indicate that the folder is now set to
auto-populate.

@ Note In auto-populate mode, the contents of the project folder reflect the hierarchy of
the specified folder on disk, as well as any changes that are made outside the development

environment.

LabVIEW Core 3 Exercises

Q

Click the Windows Start button and select All Programs»
Accessories»Notepad to launch Notepad.

In Notepad, select File»Save and save the file as Data File.txt
in the <Exercises>\LabVIEW Core 3\Project Explorer
Tools\Working Directory\Sine Wave directory.

U Close Notepad.

Notice that Data File.txt has been added to the Sine Wave
auto-populating folder on the Items page of the Project Explorer
window.

Search for project items.

a

a

In the Project Explorer window, select Edit»Find Project Items.

In the Find Project Items dialog box, enter sine in the textbox,
as shown in Figure 4-9, and click Find.

4-12 ni.com



Lesson 4  Designing the Project

£ Find Project Items in "Conflicts. lvproj” g

Tvpe in kext to search For;

[] case sensitive
[] Match while word

[ regular expression

Search results: (Found & items in "Conflicks, lvproj™)

Marne Location in Project Path |
m;' Sine Wave Iy Computer/Sine Wave Ci\ExercisesiLabWIEW Core 31Project Explorer i
I;il, Sine Wave - Generate Signal.w My Computer/Sine Wave/Sine Wave - Generate 5 C\Exercises\LabWIEW Core 3\Project Explarer Th
E’l Daka File, kxt My Computer/Sine Wave/Data File bxt CiiExercisesiLabWIEW Core 31Project Explorer T
gﬂ, Sine \Waveforn, vi My Computer/Dependenciesvi. ibiNI_MAEBase. lvlil D:\Program Files\Mational InstrumentsiLabyTE W

I;’;l, Gaussian Modulated Sine Patke My Computer/Dependencies)vi.libfNI_aaLEase. vl D:\Program Files\Mational InstrumentsiLabyIE W
I!!LI» General Gauss-Mod Sine. vi My Computer/Dependencies i ibiMNI_aaLBase. vl D:\Program Files\Mational InstrumentsiLabyIE

gg, Sine Pattern, vi My Computer/Dependenciesvi ibiNI_aaLEBase. vl D:\Program Files\Mational InstrumentsiLabVIE W
gil, Sine Wave, vi My Computer/Dependencies i ibiNI_AaLEase. vl D:\Program Files\Mational InstrumentsiLabyIEW
[
< 2]

’ Go To ] ’ Close ] [ Help

Figure 4-9. Find Project Items Dialog Box

U Select Sine Wave - Generate Signal.vi and click Go To. This item
should now be highlighted in the Project Explorer window.

3. Save and close the project.

End of Exercise 4-3

© National Instruments Corporation 4-13 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

Exercise 4-4 Choose Data Types

Goal
Design and create the data types that you need for this application.
Scenario
When you develop a VI, you must identify and design the data types that you
need to use in the application.
Design

Design a cluster called Cue for the cue information that contains the
following data elements:

e Cue Name (string)

e Wait Time (32-bit unsigned integer)

* Fade Time (32-bit unsigned integer)

e Follow Time (32-bit unsigned integer)
e Channels (2D array of channel.ctl)

The final cluster should resemble Figure 4-10. Use controls from the
System palette where appropriate, so your application will look like the
native operating system when moved to different locations.

Figure 4-10. Cue Information Cluster

LabVIEW Core 3 Exercises 4-14 ni.com



Implementation

© MNational Instruments Corporation

Lesson 4  Designing the Project

Open the TLC project.

Add tlc_Cue_Information.ctl to the Controls virtual folder in
the TLC project.

O Right-click the Controls virtual folder in the TLC project tree and
select Add»File from the shortcut menu.

U Navigate to the <Exercises>\LabVIEW Core 3\
Course Project\Controls directory, select
tlc_Cue_Information.ctl and click Add File to add the file.

Open tlc_Cue_Information.ctl and verify that the Control Type
pull-down menu is set to Type Def.

Create the Cue Name, Wait Time, Fade Time, and Follow Time controls.
Use the System palette to create the controls. Add the controls to the
cluster.

O Add a String control to the cluster and label the control Cue Name.

U Add a Numeric control to the cluster and label the numeric Wait
Time (s).

O Right-click the numeric and select Representation»Unsigned
Long (U32) from the shortcut menu.

U Create two copies of the Wait Time (s) control in the cluster. Name
one Fade Time (s) and name one Follow Time (s).

Create the Channels 2D array shell. Turn off index display for the array.

U Add an array from the Modern palette to the cluster. Change the
label of the array to Channels.

U Right-click the array shell and select Add Dimension from the
shortcut menu to make the array 2D.

O Right-click the array shell and select Visible Items»Index Display
to turn off index display.

Add the channel.ctl file from the <Exercises>\LabVIEW
Core 3\Course Project\Controls directory to the Controls
virtual folder of the TLC project.

4-15 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

7. Click and drag channel.ctl from the Project Explorer window to
the Channel array shell you created in step 5.

8. Save and close the tlc_Cue_Information control.

9. Save the project.

End of Exercise 4-4

LabVIEW Core 3 Exercises 4-16 ni.com



Exercise 4-5
Goal

Lesson 4  Designing the Project

Information Hiding

Design a VI that provides an interface to the data.

Scenario

Build a VI that uses a functional global variable to provide an interface to
the Cue data type you created in Exercise 4-4. The functional global variable
provides a safe way to access the data that the application needs.

Design

To provide an interface to the data in the Cue data type, you need to create
a VI that can access the Cue data type. Create a functional global variable to
access the data.

The functional global variable implements the following functions:

Implementation

© MNational Instruments Corporation

Initialize

Add Cue

Get Cue Values

Set Cue Values

Get Number of Cues

Get Empty Cue

. Open the TLC project if it is not already open.

Add the cue module files to the TLC project.

U Right-click Modules in the project tree and select Add»Folder
(Snapshot) from the shortcut menu.

O Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\Cue folder and click Current Folder to add
the folder and its contents to the project tree.

Open tlc_Cue Module.vi. The controls, indicators, and structures
have already been added to the VI. Notice that the VI uses the custom
control you created in Exercise 4-4.

4-17 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

4. Set the default value of the Fade Time (s) input to 1.
U Set Fade Time (s) in the Cue Input cluster to 1.

U Right-click the Fade Time (s) control and select Data Operations»
Make Current Value Default from the shortcut menu.

5. Complete the Initialize case, as shown in Figure 4-11. This case
executes when the Theatre Light Control software starts.

T "Initislize" pf
0
v} ] m mmzm-sz
0]
Cue Index g

Camrnand @— J

Cue Input |[ 525 Femees

Mumber of Channels Unbul;dle By Name
I::E“ oS ..:KEIA

Colurnns

Figure 4-11. Initialize Case

U Add an Unbundle By Name function to the Initialize case to extract
the Rows and Columns elements from the Number of Cues cluster.

Add an empty Array Constant to the Initialize case.

Drag t1lc_Cue_Information.ctl from the Project Explorer
to the array shell to create the Cue Information constant.

U Right-click the constant and select Data Operations» Empty
Array.

Wire the constant to an output tunnel on the While Loop.

Create shift registers on the While Loop tunnels for Cue
Information, Rows, and Columns.

LabVIEW Core 3 Exercises 4-18 ni.com



Lesson 4  Designing the Project

U Right-click the Row output tunnel on the Case structure and select
Linked Input Tunnel»Create and Wire Unwired Cases from the
shortcut menu. Click the corresponding input tunnel to link it to the
output tunnel. LabVIEW automatically wires the linked tunnels in
all existing cases. If you add a case, LabVIEW wires the tunnels in
the new case.

U Repeat the previous step for the Columns output tunnel.

@ Note The True constant wired to the loop conditional terminal causes the loop to iterate
only once each time it is called.

6. Complete the Add Cue case as shown in Figure 4-12 using the following
items. This case adds a new cue to the Cue List.

U Build Array function—Resize the function to have two inputs.

W["add Cue”, Default

v} Euild &rray
) 1 i) |

Cue Index

Command @—J

Cue Input |[55 s K
;I X
i § =
m T

-

Figure 4-12. Functional Global Variable Add Cue Case

© National Instruments Corporation 4-19 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

i 7. Use the Index Array function to complete the Get Cue Values case,
=2 O as shown in Figure 4-13. This case loads the next cue from the Cue List.
To]"Gek Cue values” ]
>} £ 2 1=
e Ind - Index Array
|@_ﬂ. Cue Cukput
Command E—
Cue Input |[55% K=
m T
_
Figure 4-13. Get Cue Values Case
B 8. Use the Replace Array Subset function to complete the Set Cue Values
i case as shown in Figure 4-14. This case is modifies an existing cue.
Ta]"Set Cue Values” ]
Replace Array Subset
v} [ 'ﬁ_"“ o=
Cue Index
Command E—
Cue Input |[55% K= :
m T
_

Figure 4-14. Set Cue Values Case

LabVIEW Core 3 Exercises 4-20 ni.com



Lesson 4  Designing the Project

9. Use the Array Size function to complete the Get Number of Cues case,
as shown in Figure 4-15. This case retrieves the recorded cues and
updates the Cue List.

T " et Number of Cugs” < pf

L}
i
;

Cue Index Array Size
""" Pz |Mumber of Cues

Command @— J

Cue Inpuk [[527% Mo

m ....... 1
Figure 4-15. Get Number of Cues Case
10. Complete the Get Empty Cue case, as shown in Figure 4-16.
This case creates a blank cue, for example, to initialize the front panel
or record a new cue. A blank cue has an intensity of zero, the color black,
and the appropriate channel number.
Ta]"Get Erpty Cug” S
= B =12
N]
Cue Index N I Channel
Chaninel { Channels b= Cue output |
Bundle By MName 'J j Bundle By Mame 2 |
Comrand @—J o= i ‘ & a =
m Increment
Cue Input |[52E Kool m —
[
m T 1

Figure 4-16. Get Empty Cue Case

© MNational Instruments Corporation 4-21 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

a

Add two For Loops to the Get Empty Cue case. Connect the Rows
data wire to the outer For Loop count terminal. Connect the
Columns data wire to the inner For Loop count terminal.

@ Tip Create more working space for the front panel or block diagram by pressing the
<Ctrl> key and using the Positioning tool to drag out a rectangle where you want more

space.

(&)

a

Add channel. ctl constant from the Controls virtual folder of the
TLC project.

Tip Arrange a cluster horizontally or vertically by right-clicking the cluster border

and selecting Autosizing»Arrange Horizontally or Autosizing»Arrange Vertically.
Use this technique to decrease the size of the cluster.

LabVIEW Core 3 Exercises

11.

a

a

132 numeric constant—This constant ensures that the channel
number starts at zero each time this case executes.

Two shift registers—The shift registers store the channel numbers as
you iterate through the 2D array.

Increment function—This function increments the channel number
for each iteration of the For Loops.

Bundle By Name function—Add this function inside the inner For
Loop to create a blank channel from channel.ctl, replacing the
Channel numeric value.

Bundle By Name function—Add this function outside the nested For
Loops to create a new cue from the Cue Input parameter, replacing
the Channels array value.

When you wire the Channel output of the Bundle By Name function
in the inner For Loop to the Channels input of the second Bundle
By Name function, the tunnels on the For Loops have indexing
enabled by default. This creates a 2D array of Channels, where the
outer loop determines the number of rows and the inner loop
determines the number of columns.

Switch to the front panel, right-click the outside border of the Cue
Output indicator, and select Create»Local Variable to create the
local variable for the Cue OQutput.

Save the VI.

This VI provides controlled access to the data stored in the cue. With this
type of VI, the data is protected.

4-22 ni.com



Testing

Lesson 4  Designing the Project

Test the VI to verify its operation.

1.

© MNational Instruments Corporation

Set the following values for the front panel controls:

U Command = Initialize

0 Rows=4

U Columns =8

Run the VL.

Set the following values for the front panel controls:

0 Command = Get Empty Cue

Run the VL.

Verify that the Cue Output contains a 32 element Channel array.

O Right-click the Channels indicator and select Visible Items»Index
Display.

U The array should contain 32 elements because you specified 4 rows
and 8 columns.

Verify that there are 4 rows by increasing the Row Index from O to
3. Verify that there are 8 rows by increasing the Column Index from
0 to 7. The element in row 3, column 7 should be Channel 31.

U Right-click the Channels indicator and select Visible Items»Index
Display to remove the checkmark and hide the index display.

Set the following values for the front panel controls:
0 Command = Add Cue

U Cue Input = Enter dummy data in the Wait Time (s), Fade
Time (s), and Follow Time (s) controls.

Run the VL.
Set the following values for the front panel controls:

O Command = Get Number of Cues

4-23 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

9. Run the VL.
10. Verify that the Number of Cues indicator displays 1.
11. Set the following values for the front panel controls:
U Command = Get Cue Values
Q0 Cue Index =0
12. Run the VL.
13. Verify that Cue Output matches the values you entered in step 6.

14. Save and close the VI and save the project.

End of Exercise 4-5

LabVIEW Core 3 Exercises 4-24 ni.com



Lesson 4  Designing the Project

Exercise 4-6  Design an Error Handling Strategy
Goal

Develop a strategy to handle errors in the application.

Scenario

Creating a custom error code for your application is easy in the LabVIEW
environment. Use the custom error code in the application to provide a
detailed description of the error that occurred. You can use this information
to diagnose the error and the location where the error occurred. Every
application that contains multiple states must provide a method and strategy
for handling errors.

Design

Use the LabVIEW Error Code File Editor to create the following error code,
based on a possible error that can occur in the application.

Error Code Description

5000 Cue Data Error

Implementation

Part I: Edit the Error Code File
1. Open the TLC project if it is not already open.

2. Edit the Error Code File.

4 Select Tools»Advanced»Edit Error Codes and click New to create
a new error code file in the Error Code File Editor.

O Click Add to open the Add Error Code dialog box. Create the error
code as specified in the Design section.

@ Note LabVIEW automatically sets the New Code value to 5000 and increments it each
time you click Add.

U Enter the description from the table in the Design section in the
New Description text box. Click OK to add the error code.

O Select File»Save As to save the error code fileas t 1c-errors. txt
in the <labview>\user.lib\errors directory.

U Close the Error Code File Editor.

© National Instruments Corporation 4-25 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

#

iy
MA

Part II: Modify the Functional Global Variable

1.

In Exercise 4-5, you created a functional global variable to control
access to the cue data. It is possible to pass an invalid index to the
tlc_Cue Module.vi.Modify the functional global variable to handle
the invalid index and generate error 5000.

a

a

Open tlc_Cue Module.vi from the TLC project.

Open the block diagram and add a Case structure around the While
Loop.

1 Wire error in to the case selector terminal.

Wire the error clusters through all the structures. Right-click each
unwired error output tunnel and select Linked Input Tunnel»
Create and Wire Unwired Cases to automatically wire unwired
cases.

Modify the Get Cue Values case to determine if the desired cue exists
before attempting to obtain its value. Figure 4-17 shows the True and
False cases for the Get Cue Values case. To build the Get Cue Values
case, use the following items:

a

Array Size function—This function determines the number of
elements in the cue array. The minimum number of cues in the array
1S zero.

In Range And Coerce function—When you wire the In Range and

Coerce limit inputs as shown in Figure 4-17, the In Range? output
indicates whether the specified Cue Index is valid for the existing

cue array. If it is not within range, error 5000 generates.

Two numeric constants

U Case structure

O Error Cluster From Error Code VI—AGdd this VI to the False case of

the Get Cue Values Case structure.

@ Note The Error Cluster From Error Code VI converts an error or warning code to an
error cluster. This VI is useful when you receive a return value from a DLL call or when
you return user-defined error codes.

LabVIEW Core 3 Exercises

4-26 ni.com



Lesson 4  Designing the Project

U True constant—Wire this constant to the show call chain? input so
that when an error occurs, source includes the chain of callers from
the VI that produced the error or warning to the top-level VL.

Mo Error 't
Ta["Get Cue valoes” hd2
= =
Array Size =
- Index Array e ]
@E‘ In Range and Coerce B
error in {no error) errar ouk
= =
Command [E8—|
Cue Tnput
=1 =
I':',_. =
m e
14| Mo Error 't
" Get Cue Vahues" Pl
-, =
Array Size JFa= ~F
Eraz] In Range and Coerce
Cue Index @ o
¥
5000
error in {no error) S g v error aut
=T A
Command 22— Error Cluster Fram Error Code.vi
Cue Input
v] [&]
¥} =
o -8

© National Instruments Corporation

Figure 4-17. Modified Get Cue Values Case

4-27

LabVIEW Core 3 Exercises



Lesson 4

Designing the Project

3. Modify the Set Cue Values case to determine if the desired cue exists
before attempting to change its value. Figure 4-18 shows the True and
False cases for the Set Cue Values case. To build this case, use the same
items that you used for the Get Cue Values case in step 2.

| Mo Error ‘t
D u]
[l"Set Cus values” ]
[True =
Replace Array Subset
L e =
dj i=
P -
------ In Range and Coerce
Cue Index @
error in (no error) error out
=
Cammand @—
Cue Input |[==5k
~]
"::_, =
o Er]--{@
[m’ a
Talna Errar ~ ]
Ta["Set Cue values" hd3
False ~
! o i
Array Size
------- In Range and Coerce
5
Cue Indsx
etrar in {na errar) oo #\?! Btrar out
=S o
Command @— Error Cluster From Error Code.vi
Cue Input [E28
= =
¥ =
| T

LabVIEW Core 3 Exercises

Figure 4-18. Modified Set Cue Values Case

4. Save and close the VI and the project.

4-28

ni.com



Testing

5.

Lesson 4  Designing the Project

Restart LabVIEW to load the error code file. Changes to error code text
files take effect the next time you start LabVIEW.

Generate an error with the Cue Module VI.

U Open the TLC project.

O Open tlc_Cue Module.vi from the project tree.

U Enter an invalid Cue Index with Command set to Get Cue Values.
U Run the VL.

Verify that the error explanation matches what you specified when you
created the error code file.

U Verify that error out indicates an error occurred.

O Right-click the error cluster and select Explain Error from the
shortcut menu.

U Verify that the Explanation text box displays the custom error
description in the Possible reason(s): section.

Verify that the same error generates if you enter an invalid Cue Index
with Command set to Set Cue Values.

Close the VI.

End of Exercise 4-6

© MNational Instruments Corporation

4-29 LabVIEW Core 3 Exercises



Lesson4  Designing the Project

Notes

LabVIEW Core 3 Exercises 4-30 ni.com



Implementing the User Interface

Exercise 5-1 Implement User Interface-Based Data Types

Goal
Implement user interface-based data types.
Scenario
Implement the user interface for the application. The specification from the
customer and the requirements document define the user interface for the
project.
Design
Figure 5-1 shows the user interface from the requirements document.
Cue Control Cue Information
Channel 0 Channel Channel Channel 0
ad Cue Mame § ’ : ;
| Inkensity Inktensity Inktensiky Inktensity O
Color [N Colar Calar Caolor [
Sw'ait Time (s}
0 Chanrel 0 Channel Charinel Chanrel 0
Fade Time fs) Inktensity Intensity Intensity Intensity 0O
0 Color [ Colar Colar Color [
el Wi (&) Channel 0 Channel Channel Channel 0
d Inkensity Inktensity Intensity Inkensity 0O
Color [N Colar Colar Color [
v Channel 0 Channel Channel Channel 0
Inkensity Inktensity Inktensiky Inktensity O
[ [ @ [ 0] coor W || colr color coor I

Figure 5-1. Theatre Light Control User Interface

The user interface includes the following inputs and outputs.

Inputs

© MNational Instruments Corporation 5-1

Play button—Input by the user

Stop button—Input by the user

Record button—Input by the user

LabVIEW Core 3 Exercises



Lesson 5  Implementing the User Interface

Implementation

LabVIEW Core 3 Exercises

Outputs

Cue List listbox—Displays a list of all of the recorded cues
Cue Name string—Displays the name of the currently playing cue

Wait Time (s) numeric—Displays the wait time for the currently
playing cue

Fade Time (s) numeric—Displays the fade time for the currently
playing cue

Follow Time (s) numeric—Displays the follow time for the currently
playing cue

Channel cluster—Displays the channel number, channel intensity, and
channel color for each channel

Create a front panel similar to the user interface shown in Figure 5-1.

1.

Open the TLC project if it is not already open.

2. Create a new VI that uses the producer/consumer (events) design

pattern.

U Select FilexNew from the Project Explorer window to open the
New dialog box.

U In the New dialog box, select VI»From Template»Frameworks»
Design Patterns»Producer/Consumer Design Pattern(Events)
and make sure a checkmark appears in the Add to Project
checkbox.

U Click OK to open the design pattern.

U Select File»VI Properties and select Window Appearance from
the Category pull-down menu.

1 Add a checkmark to Same as VI name to use the VI name for the
title of the VI window.

U Save the VI as TLC Main.vi in the <Exercises>\LabVIEW
Core 3\Course Project directory. LabVIEW automatically
adds the file to the project.

Delete the Queue Event and STOP buttons from the front panel.
Create the Cue List indicator.

O Add a System Listbox from the System palette to the front panel.

5-2 ni.com



a
Q
Q

Lesson 5 Implementing the User Interface

Change the label of the Listbox to Cue List.
Right-click the Listbox and select Change to Indicator.

Right-click the Listbox. Select Visible Items and deselect Label to
hide Cue List.

5. Customize a System button with a decal to create the Play button.

a

()

Add a System button to the front panel.

Tip Press the <Ctrl-space> keys to display the Quick Drop dialog box. Use this dialog

box to specify a palette object or project item by name and then place the object on the
block diagram or front panel. Press the <Enter> key, double-click the name of the object
in the search results text box, or click the block diagram or front panel to attach the object
to the cursor. Then click the location on the block diagram or front panel where you want

to add the object.

a

a

Right-click the button and select Advanced»Customize from the
shortcut menu to open the Control Editor.

Select Edit»>Import Picture to Clipboard and select play.gif
from the <Exercises>\LabVIEW Core 3\Course Project)\
Shared\Images directory to add the image to the clipboard.

Right-click the button in the Control Editor and select Import
Picture from Clipboard»Decal from the shortcut menu to add the
decal to the button.

Right-click the button and deselect Visible Items»Boolean Text
from the shortcut menu to hide the button text.

U Change the label of the control to Play.

Q

Save the control as Play Button.ctl inthe <Exercises>\
LabVIEW Core 3\Course Project\Controls directory.

Close the Control Editor. When prompted, click Yes to replace the
original control with the custom control.

Select Play Button.ctl in the project tree and drag the file to the
Controls virtual folder to add the control in the project hierarchy.

6. AddRecord Button.ctl and Stop Button.ctl to the project and
the front panel.

Q

© MNational Instruments Corporation

Right-click the Controls virtual folder, select Add»File from the
shortcut menu and navigate to the <Exercises>\LabVIEW
Core 3\Course Project\Controls directory.

5-3 LabVIEW Core 3 Exercises



Lesson 5  Implementing the User Interface

1 Select Record Button.ctl and Stop Button.ctl and click
Add File to add the files to the Controls virtual folder.

@ Tip <Ctrl>-click to select multiple files.

O Click and drag the custom controls from the project tree to the front
panel.

U Arrange the controls.
U Hide the control labels.

7. Add the typedef that contains the Cue Name, Wait Time, Fade Time,
Follow Time, and array of Channels to the front panel.

U Drag tlc_Cue_Information.ctl from the project tree to the
front panel.

U Click and drag the border of t1c_Cue_Information.ctl to
resize the cluster to match the specification in Figure 5-1. Click and
drag the corner of the array to display a 4 X 4 array of channels.

U Hide the label for the array.

O Right-click the cluster border and select Change to Indicator from
the shortcut menu.

8. Add decorations to the front panel to visibly group objects as shown in
Figure 5-1.

U Use the System Recessed Frame decoration to create a
professional-looking user interface.

U Double-click an empty space on the front panel and enter Cue
Control to create a free label to place above the Listbox.

9. Add error in and error out clusters to the front panel to pass error data
through the VL.

10. Resize the window to hide the error clusters.

11. Save the VI.

@ Note The Run button is broken because you deleted the Queue Event and Stop buttons.
You resolve the broken Run button in a later exercise.

End of Exercise 5-1

LabVIEW Core 3 Exercises 5-4 ni.com



Exercise 95-2
Goal

Scenario

Design

TLES

W

Implementation

Lesson 5 Implementing the User Interface

Implement a Meaningful Icon

Implement a meaningful icon for the VI.

Follow the suggestions for creating an icon to develop an icon that describes
the purpose of TLC Main VI.

Create an icon for the TLC Main VI that resembles the icon shown at left.

. Add shared files and the Shared virtual folder to the project.

O Right-click My Computer in the project tree and select Add»
Folder (Snapshot) from the shortcut menu.

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Shared directory and click Current Folder to add the
folder and its contents to the project tree.

. Open the front panel of TLC Main VI.

. Import a graphic to use in the icon.

U Select Edit»Import Picture to Clipboard.

U Navigate to 1ight bulb.bmp in <Exercises>\LabVIEW
Core 3\Course Project\Shared\Images and click OK to
import the graphic to the clipboard.

. Right-click the VI icon in the upper right corner of the front panel and

select Edit Icon from the shortcut menu to open the Icon Editor.

. Delete the default icon.

@ Tip Press <Ctrl-A> to select all user layers of the icon.

© MNational Instruments Corporation

6. From the Templates tab, select All Templates and click the template

shown at left.

5-5 LabVIEW Core 3 Exercises



Lesson 5  Implementing the User Interface

{1}1 7. Use the Fill tool to apply a different color to the top region of the icon.

@ Tip Use a light color to help keep the icon text readable.

T 8. Use the Text tool to add text to the top section of the icon.

@ Tip Double-click the Text tool to modify the font.

9. Add the light bulb to the bottom section of the icon.
U Select Edit»Paste to add the graphic to the icon.

10. Click OK to close the Icon Editor. Save the VI.

End of Exercise 5-2

LabVIEW Core 3 Exercises 5-6 ni.com



Exercise 5-3

Goal

Scenario

Design

Implementation

Lesson 5 Implementing the User Interface

Implement an Appropriate Connector Pane

Implement an appropriate connector pane for the VI.

Build every VI with the 4 X 2 X 2 X 4 connector pane. This connector pane
pattern provides for scalability, maintainability, and readability. The
4 X 2 X 2 X 4 connector pane is very easy to wire.

Modify the TLC Main VI by following the connector pane guidelines in this
lesson to create a 4 X 2 X 2 X 4 connector pane, as shown at left. Connect the
error in and error out clusters to the connector pane terminals.

1. Open the front panel of TLC Main VI.

2. Right-click the VI icon in the upper right corner of the front panel and
select Show Connector from the shortcut menu.

3. Verify that the connector pane uses the 4 X 2 X 2 X 4 pattern.

4. Use the Wiring tool to connect the error in and error out clusters to the
connector pane.

U Click the connector pane terminal you want to connect to the error
in cluster. Notice that your pointer becomes the wiring tool.

O Click the error in cluster to assign the control to the connector pane
terminal.

U Click the connector pane terminal you want to connect to the error
out cluster.

U Click the error out cluster to assign the indicator to the connector
pane terminal.

5. Right-click the connector pane and select Show Icon from the shortcut
menu to display the icon for the VI.

6. Save and close the VI.

End of Exercise 5-3

© National Instruments Corporation 5-7 LabVIEW Core 3 Exercises



Lesson 5  Implementing the User Interface

Notes

LabVIEW Core 3 Exercises 5-8 ni.com



Implementing Code

Exercise 6-1
Goal

Implement the Design Pattern

Use LabVIEW to implement a design pattern as the basis for the application
architecture.

Scenario

Using a design pattern for the architecture makes the application readable,
scalable, and maintainable. Implementing the producer/consumer (events)
design pattern makes the user interface more responsive. Using a variant
data type makes the architecture scalable for future needs.

Design

Modify the design pattern as follows to create an architecture that meets the
project requirements.

Implementation

Create a type definition for the functions that the application performs.

Use the type definition as the data type to pass data from the producer to
the consumer.

Initialize the design pattern.

In the consumer loop of the design pattern, verify that a case exists to
process each function in the enumerated data type.

Enqueue an element into the producer/consumer with (events) queue
when the producer receives an event.

Create a custom run-time menu to perform the Load, Save, and Exit
functions.

Add a case to the Event structure in the producer loop to respond to
menu selections.

Create user events that allow the consumer loop to send error data to the
producer loop to stop the producer

Implement the architecture for the Producer/Consumer (Events) design
pattern, as shown in Figure 6-1.

© MNational Instruments Corporation

6-1 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

tlc_Consumer Contral.ctl

This loop is the producer loop,

H,

-+ Initialize 7|

@

v} U - =

Cue Information : Source
i
Cue List

This loop is & consumer loop.
Record
1 "Initislize", Default Vt
e

=0 -
Flay =

errar in (no errar) error out ||

BX

Figure 6-1. Theatre Light Controller Architecture

1. Open the TLC project.

2. Add tlc_Functions.ctl to the project. This type definition is an
enum which contains the functions that consumer loop of the application
will perform. t1c_functions.ctl includes the following functions:

e Initialize

* Record
e Load

* Save

* Play

e Stop

* Exit

U Right-click Controls in the project tree, select Add»File from the
shortcut menu and navigate to the <Exercises>\LabVIEW

Core 3\Course Project\Controls directory

O Select tlc_functions.ctl and click Add File to add the control
to the Controls virtual folder.

LabVIEW Core 3 Exercises

6-2

ni.com



Lesson 6  Implementing Code

3. Create a scalable data type to pass data from the producer loop to the
consumer loop. This data type is a cluster that includes the
tlc_Functions.ctl control and a variant.

Select File»New to open the New dialog box.

Select Other Files»Custom Control from the Create New tree.
Verify Add to project is selected.

Click OK to open the Control Editor.

Add a cluster constant to the front panel of the Control Editor.

I T A N

Change the label of the cluster to t1c_Consumer Control.ctl,
to correspond to the name of the file. Using the filename of the
control as a label helps you keep track of the block diagram controls.

U Dragthe tlc_Functions.ctl type definition from the Project
Explorer window to the cluster.

1 Add a Variant control to the cluster.

U Change the label of the variant to Data. Figure 6-2 shows the
resulting cluster.

te_Consumer Contral.ctl

\Command
;)Ilnitialize

Data

Figure 6-2. Variant and Type Definition Enumerated Control Cluster
U Select Type Def. from the Control Type pull-down menu.

O Save the type definition as t1c_Consumer Control.ctl in
the <Exercises>\LabVIEW Core 3\Course Project)\
Controls directory.

U Close the Control Editor.

U Move the tlc_Consumer Control.ctl control to the Controls
virtual folder in the LabVIEW Project.

4. Open the TLC Main VL

© National Instruments Corporation 6-3 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

5. Add tlc_Consumer Control.ctl to the block diagram.

Q

a

Drag the control from the Project Window to the block diagram to
add it as a constant.

Position the constant outside the producer and consumer loops.

Set the value of the enumerated type constant within the constant to
Initialize.

6. Initialize the producer/consumer design pattern.

a

a

a

Delete the empty string constant wired to the Obtain Queue function.

Wire the tlc_Consumer Control constant to the element data type
input of the Obtain Queue function.

Add the Enqueue Element function to the block diagram. Wire the
cluster constant to the Enqueue Element function to initialize the
design pattern.

7. In the consumer loop of the design pattern, ensure a case exists to
process each function in the enumerated data type. The resulting block
diagram should be similar to Figure 6-1.

a

Add the Unbundle by Name function outside the Case structure in
the consumer loop.

Wire the element output of the Dequeue Element function to the
input of the Unbundle by Name function.

Delete the error cluster wires connected to the case selector terminal
and the loop conditional terminal for the consumer loop.

@ Note You are deleting the initial error handling wiring in preparation for more complex
structures in later exercises. In Exercise 6-4 you build a functional global variable to
handle errors in the application and in Exercise 7-5, Integrate Error Module, you
integrate the error module in the main application.

LabVIEW Core 3 Exercises

a

a

Wire the Command element of the Unbundle by Name function to
the case selector terminal of the Case structure.

Right-click the border of the Case structure and select Add Case
For Every Value from the shortcut menu to populate the Case
structure with the items in the enumerated type control.

6-4 ni.com



Lesson 6  Implementing Code

U Wire a False constant to the loop condition terminal of the While
Loop in each case of the Case structure. Change the constant in the
Exit case to True to enable the Exit case to stop the consumer loop.

U Right-click the error cluster tunnel on the consumer loop and select
Replace with Shift Register from the shortcut menu. Add the other
side of the shift register to the right side of the consumer loop.

U Wire the queue reference and error cluster through each case of the
consumer loop.

8. Modify an event case in the producer loop to respond to the Value
Change event for the Play button.

O Right-click the Event structure and select Edit Events Handled by
This Case from the shortcut menu to open the Edit Events dialog
box.

U Select Play from the Event Sources list and select Value Change
from the Events list.

U Click OK.

9. Modify the Play event case to send a message to the consumer loop to
execute Play, as shown in Figure 6-3. Delete the Unbundle By Name and
Or functions that are connected to the loop conditional terminal. Add the
following items:

U tlc_Consumer Control.ctl
U Bundle By Name function

U tlc_functions.ctl (setto Play)

@ Tip Right-click the Command element of the Bundle By Name function and select
Create»Constant from the shortcut menu to create t1c_functions.ctl.

U Enqueue Element function

O False constant

© National Instruments Corporation 6-5 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

|Ihis loop is the producer loop. |
=] l[[0] "Play™: ¥alue Change <]

tlc_Consumer Contral,ct

o Initislize v| |

|#Play_~H Command H’)mE

B .

7
=
[

Source

Figure 6-3. Producer Play Event

10. Create a Value Change event case for the following controls: Record
and Stop.

O Right-click the Play event case, and select Duplicate Event Case
from the shortcut menu.

@ Tip If you duplicate an event case with the terminal in the event case, you also duplicate
the terminal. Placing a terminal in the corresponding event case is good programming
style because it ensures that LabVIEW reads the terminal when the event occurs.

Select Record and the Value Change event and click OK.

Modify the enumerated type constant to send a Record command to
the consumer loop.

O Repeat the previous step for the Stop control, changing the
command the producer sends to the consumer to correspond to the
appropriate function.

Table 6-1 shows the appropriate enumerated type control item to add in
the queue when each control receives a value change event.

Table 6-1. Control Items

Control Enum Item
Record button Record
Play button Play
Stop button Stop

LabVIEW Core 3 Exercises 6-6 ni.com



Lesson 6  Implementing Code
11. Move the Record, Play and Stop control terminals to the corresponding
event cases to ensure that each control is read when it generates an event.

12. Create a custom run-time menu to perform the Load, Save, and Exit
functions. Figure 6-4 shows the completed menu.

File:
Cpen Chrl+o
Save Ctrl+s

Exit

Figure 6-4. LabVIEW Run-Time Menu

O Right-click My Computer in the project tree, select New» Virtual
Folder, and create the Menu virtual folder in the project tree.

U In the TLC Main VI, select Edit»>Run-Time Menu to display the
Menu Editor dialog box.

U Select File»New to create a new run-time menu.

Enter _File in the Item Name textbox.

@ Tip In the Item Name textbox, enter an underscore (_) before the letter you want to
associate with the <Alt> key for that menu. This creates a shortcut so the user can press
the <Alt> key and the associated key to access the menu.

Change the text in the Item Tag textbox to File.

Place your cursor in Shortcut and press the <Ctrl-F> keys.
LabVIEW records the shortcut key combination for you.

U Click the blue + button on the Menu Editor toolbar to add a new item
under the File item.

U Click the right arrow button on the toolbar to make the new item a
subitem of the File menu.

Q Enter _Open. .. in the Item Name textbox to create a menu item
for Open.

Change the Item Tag to Open.

U Place your cursor in Shortcut and press <Ctrl-O> to record the
keyboard shortcut.

@ Note The Item Tag is passed to LabVIEW so that you can create decision making code
to respond to the selected menu item.

© National Instruments Corporation 6-7 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

LabVIEW Core 3 Exercises

13.

a

Click the blue + button on the Menu Editor toolbar to add a new item
under the File item.

Enter _Save. .. in the Item Name textbox to create a menu item
for Save.

Change the Item Tag to Save.

Place your cursor in Shortcut and press <Ctrl-S> to record the
keyboard shortcut.

Click the blue + button on the Menu Editor toolbar to add a new item
under the File»Save item.

Create a menu separator by selecting Separator from the Item Type
drop-down menu.

Click the blue + button on the Menu Editor toolbar to add a new item
under the File item.

Enter E_xit in the Item Name textbox to create a menu item for
Exit.

Change Item Tag to Exit.

Select File in the Preview section to preview the menu and verify
that it matches Figure 6-4.

Save the run-time menu as t1lc_Menu.rtmin the <Exercises>\
LabVIEW Core 3\Course Project\Menu directory.

Close the Menu Editor. When prompted, click Yes to change the
run-time menu to the custom menu.

Add a case to the Event structure in the producer loop to respond to
menu selections.

a

a

Delete any unused cases in the Event structure.

Right-click the Event structure border and select Add Event Case
from the shortcut menu to open the Edit Events dialog box.

Select <This VI> from the Event Sources list and Menu Selection
(User) from the Events list to create the Menu Selection (User)
event case. Click OK.

6-8 ni.com



Lesson 6  Implementing Code

0 Add a Case structure to the Menu Selection (User) event case. Wire
the ItemTag event data node to the case selector terminal.

U Modify the Case structure in the Menu Selection (User) event case
to have four cases. A Default case and a case for each ItemTag
string—"Open", "Save", and "Exit". Be sure the spelling for the
case selector matches the spelling of the Item Tags in the Menu
Editor.

Delete any unused cases in the Case structure.

Modify the Exit case to stop the VI when the user selects File»Exit,
as shown in Figure 6-5. Use the same items that you used for step 9.

[This loop is the producer loop. |

=} i
tlc_Consumer Contral, ctl
o Tnitalze ]| :
l1tenTag e |#+Exit *H Command ek
Engueue Eleme
=
(unn | - I =

Figure 6-5. Menu Selection Event Case

U Wire a True constant to the conditional terminal in the Exit case and
a False constant in every other case. Set the Command element to
Exit. This causes the Exit case to stop the producer loop and the
consumer loop.

U Right-click the output tunnels and select Linked Input Tunnel»
Create and Wire Unwired Cases, then select the corresponding
input tunnels to wire the queue reference and error cluster wires
through the remaining cases in the Case structure. You build the
remaining cases in later exercises.

© National Instruments Corporation 6-9 LabVIEW Core 3 Exercises



Implementing Code

Lesson 6

SIUSAT JaSM YIM 81n1081yaly Jajj041u09 1ybiq 8ijeay) *g-g ainbi4

Juasg Jasn Aoasag

sju2A3 J0d 430

o)

(%L

anant) aseay

1510113 2043l

PR
HEEEEEEE

anani WEqo

+ W]
LOREULIO U] 8D
<0 ([
g
JuawE3
ananbag
EEER
*doa] J2Wnsuod B sl doof 51]]
24 [-E}
@ e[l
_Eui“_
—
Juaua[g ananbug
WEAT 185 <01 (1 =

PEE

[ [0aUnT SSInSUOST I

WaA3 I8s) 81D

ni.com

6-10

LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

14. Complete the block diagram as shown in Figure 6-6 to create user events
that allow the consumer loop to send error data to the producer loop to
stop the producer.

U Right-click the border of the Event structure in the producer loop
and select Show Dynamic Event Terminals from the shortcut

menu.
U Add the Create User Event function to the block diagram. LabVIEW
H uses the user event data type you wire to determine the event name

and data type of the event.

U Right-click the error in input of the Create User Event function and
select Create»Constant to create the error constant. Label the error
constant error and wire it to user event data type.

E U Add the Register for Events node to the block diagram. This function
dynamically registers the user event. Wire the event registration
refnum output of the Register for Events node to the dynamic
terminal of the Event structure.

Wire the Create User Event function to the Register for Events node.
Add the Dynamic Event case to the Event structure.

— Right-click the Event structure border and select Add Event
Case from the shortcut menu.

— Select Dynamic»<error>: User Event from the Event Sources
list and click OK.

— Wire the queue reference and error cluster through each case of
the Event structure.

@ Note The name of the dynamic event is the same as the owned label for the data
structure wired to the Create User Event function.

U Wire the status output from the event data node to the loop
conditional terminal.

U Add the Merge Errors VI to the block diagram. This VI combines
multiple error cluster inputs into a single error cluster output.

O Add the Unregister for Events function to the block diagram.
This function unregisters the dynamic event.

© National Instruments Corporation 6-11 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

U Add the Destroy User Event function to the block diagram.
X This function destroys the reference to the user event.

U Wire the Release Queue, Unregister for Events, and Destroy User
Events functions and the Merge Error VI as shown in Figure 6-6.

15. Delete any unused Event structure cases from the design pattern.

16. Connect the error in and error out clusters to the design pattern as
shown in Figure 6-6.

17. Save the V1.

Testing

1. Add the Format Into String and One Button Dialog functions to each
case of the consumer loop.

U Wire the Command enum to input 1 of the Format Into String
function.

U Wire the resulting string output to the message input of the One
Button Dialog function to open a dialog box indicating that the case
executes when the front panel receives events.

This loop is & consumer loop. |
o[ Exit” -} A
= s Command
0 Daka oo [
i R
Format Inta String One Bubkon Dialog
F%E FE
TE

Figure 6-7. Convert Enumerated Type Control to String

2. Save the VL

3. Run the VI to verify that all the functions listed in step 2 of the
Implementation section work correctly.

You can test the functionality by clicking a front panel button to execute
the Event structure. When the Event structure executes, it places a
message in the queue to execute the consumer.

LabVIEW Core 3 Exercises 6-12 ni.com



Lesson 6  Implementing Code

The only cases that are not functional at this time are Load and Save.
You implement this functionality in a later exercise.

4. Verify that you can exit the application from the run-time menu.
5. Close the TLC Main VI.

6. Save the project.

End of Exercise 6-1

© National Instruments Corporation 6-13 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

Exercise 6-2
Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Timing

Create a functional global variable that uses the Get Date/Time In Seconds
function to provide accurate software controlled timing.

The Theatre Light Controller requires accurate timing to control the cue
wait time, fade time, and follow time. The Theatre Light Controller must
respond within 100 ms when any operation is running. The timing method
you choose for the Theatre Light Controller cannot interfere with the
application response. You will develop a functional global variable that will
be used in a later exercise to implement software control timing.

Build a functional global variable that you can use to control the timing of
the Theatre Light Controller. You will use the functional global variable to
control the timing for the wait, fade, and follow times of the Theatre Light
Controller. Use the Get Date/Time In Seconds function to control the
timing.

This application requires a structure that has precise timing characteristics
and does not use the processor. However, the structure also must respond
within 100 ms to meet the application requirements. Therefore, you will use
the Get Date/Time In Seconds function in a functional global variable to
implement software control timing.

A functional global variable provides for a good architecture to modularize
the timing functionality. The functional global variable has the following
functions:

e Start—>Starts a new time from zero, which resets the elapsed time.

* Check Time—Checks if the target time has elapsed.

1. Add the timing module files and Timing virtual folder to the Modules
virtual folder.

U Right-click Modules in the project tree and select Add»Folder
(Snapshot) from the shortcut menu.

6-14 ni.com



Lesson 6  Implementing Code

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\Timing directory and click Current Folder
to add the folder and its contents to the project tree. LabVIEW adds
the following files to the project.

— tlc_Timing Command Control.ctl
— tlc_Timing Module Unit Test States.ctl
— tlc_Timing Module Unit Test.vi
— tlc_Timing Module.vi
2. Openthe tlc_Timing Module.vi.

3. Modify the No Error case to make the tlc_Timing Module VI a
functional global variable that keeps track of elapsed time, as shown in

Figure 6-8.
l'_l Mo Errar 't
W[ "Check Time"

Elapsed Time
FOBL ]

Target Time Done?

Errar in (no errar) errar ouk

== g

Figure 6-8. Timing Module Block Diagram
Add a While Loop in the No Error case of the Case structure.

Right-click the border of the While Loop and select Add Shift
Register.

U Right-click the conditional terminal of the While Loop and select
Create»Constant. Set the constant to True.

U Add a Case structure inside the While Loop.

© National Instruments Corporation 6-15 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

Move the Timer Command control to the No Error case and wire it
to the case selector input of the Case structure inside the While
Loop. The Case structure should now have a Check Time case and a
Start case.

4. Modify the Start case to store the start time of the VI, as shown in
Figure 6-9. Use the following items:

a

a

a

a

Get Date/Time In Seconds function
To Double Precision Float function
Numeric constant—Right-click and select Representation»DBL

False constant

errar in (no error)
=%

Timer Command

Ij Mo Errar "t

"ol "Start”, Default ]

Elapsed Time
FOEL]

Dane?

] error out

oo

LabVIEW Core 3 Exercises

Figure 6-9. Timing Module Start Case

5. Modify the Check Time case to output the elapsed time after a Start
command has been sent to the tlc_Timing Module VI, as shown in
Figure 6-10. Use the following items:

a

Get Date/Time In Seconds function

W Two To Double Precision Float functions

a

a

Subtract function

Greater Or Equal? function

6-16 ni.com



Lesson 6  Implementing Code

Target Time

Timer Command

Ij Mo Errar "t

'.‘.'.‘.'.‘.n "heck Tima" - :-‘.‘-‘.‘-‘.‘-‘.‘

Elapsed Time
FOEL]

Dane?

=3

errar in (no error)

Checks if the target time
has elapsed vet.

] error out

oo

Figure 6-10. Timing Module Check Time Case

6. Save the VL

Testing

A unit test VI is provided to verify the functionality of the Timing module.
The unit test VI repetitively calls the Timing module and displays the
elapsed time for the execution of the Timing module.

I.

Use the unit test VI to test if the Timing module returns the values you
specify in the Cue control.

Q

Q

Open tlc_Timing Module Unit Test.vi from the Timing
folder in the project tree.

Examine the block diagram and observe the functionality of the unit
test VL.

Specify a value for the wait time, fade time, and follow time in the
Cue Input control.

Run the VI and verify that the times returned in Measured Test
Values match what you specified in Cue Input.

Close the unit test VI and tlc_Timing Module VI.

Save the project.

End of Exercise 6-2

© National Instruments Corporation

6-17 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

Exercise 6-3
Goal

Scenario

Design

LabVIEW Core 3 Exercises

Implement Code

Observe and implement the VIs that you identified as modules for the
application.

When you carefully plan and design an application, your implementation of
the system creates scalable, readable, and maintainable VIs. Implement the
display, file, and hardware modules. These are the major modules that you
identified for the Theatre Light Control Software application. You have
already implemented the cue and timing modules.

The functional global variable approach you used to implement the cue and
timing modules provides for a very scalable, readable, and maintainable
method to build VIs. Continue to use a functional global variable to
implement the remaining modules for the application.

Display Module

The tight coupling that exists between the front panel and block diagram in
a VI requires that you update the front panel using block diagram terminals
or references from a subVI. Each of these methods has advantages and
disadvantages. Updating front panel controls and indicators using terminals
is very fast and efficient. However, you must have a way to get subVI data
to the top-level VI to update the front panel. You can loosen the tight
coupling that exists between the front panel and the block diagram by
sending a message from subVIs to the top-level VI that contains the control
or indicator you want to update. An ideal implementation for this is a
functional global variable.

LabVIEW is inherently a parallel programming language. You can take
advantage of the parallelism by using a separate display loop in the main VI
to update the user interface. The display loop contains a queue that stores
commands to perform inside the loop. You can use a functional global
variable to control the display loop from anywhere in the application by
placing commands in the queue.

The display module uses a functional global variable to store the reference
for the display queue. This allows the module to be called from anywhere in
the application to control the display loop.

6-18 ni.com



Lesson 6  Implementing Code

File Module

The file module calls the File I/O VIs. The file module provides the
functionality to initialize, load cues from a file, save cues to a file, and
shutdown. Implement the file module using the functional global variable
architecture.

Hardware Module

The hardware module calls the Theatre Light Control API. The hardware
module provides the functionality to initialize, write to, and shutdown the
hardware.

Implementation
Display Module

The Display module provides a method to update the front panel controls
and indicators from anywhere in the application. This module populates a
queue that contains the commands the display module performs and the data
needed to perform these tasks. The display module performs the Initialize
Front Panel, Update Front Panel Channels, Select Cue in Cue List,
Enable/Disable Front Panel Controls, and Update Cue List functions.

To build a system that can perform these functions, first modify the design
pattern in TLC Main VI to have a display loop, then create the display
module with a functional global variable that sends messages to the display
loop.

Create a queue that specifically controls the display loop. The display loop
only updates the user interface in the top-level VI.

Design Pattern Modification
1. Open the block diagram of the TLC Main VI.

2. Add a display loop to the block diagram, as shown in Figure 6-11. To
create the initial structure of the display loop, use the following items:

U While Loop—Add a While Loop below the consumer loop. This
will be the display loop.

U Case Structure—Add to the display loop.

U Unbundle By Name function—Add to the display loop.

© National Instruments Corporation 6-19 LabVIEW Core 3 Exercises



Implementing Code

Lesson 6

doo Aejdsig " L1-9 ainbi4

P CEER -

B

[7Go0] Aefdsip & =1 dooy =iy

|

83 sas A0ASET

530243 04 J2si

un

il

anant ssEaPY

al

anant astaEy

10413 3B

i =
[ETE

[[0] instss & s oo 5]

|

=]

usweEaEnenbul | enant WeIgo

" pUBIIGD 232 I 25T 1

a  JUBAT RSN 4=
¥ spangbey § A

[Ef

=L

JuawaE ananbug |

anan®) oEl0 |

A2 [043U00) J2UIRSU0Z IR

P

3003 1] Ry |

BT 4asT) 23RE D

LabVIEW Core 3 Exercises

6-20

© National Instruments Corporation



Lesson 6  Implementing Code

3. Create a queue to control the display loop, as shown in Figure 6-11.
Use the following items:

U tlc_User Interface Command.ctl—Right-click Controls in
the project tree, select Add»File and navigate to <Exercises>\
LabVIEW Core 3\Course Project\Controls.Add
tlc_User Interface Command.ctl and tlc_User
Interface Data Type.ctl to the project.

tlc_User Interface Data Type.ctl isused as part of
tlc_User Interface Command.ctl.

Add tlc_User Interface Command.ctl as a block diagram
constant. This constant uses a cluster of an enum and a variant to
provide a scalable data type for the display loop. Set the enum value
to Initialize.

Obtain Queue function
Enqueue Element function

U Dequeue Element function—Wire the element output of the
Dequeue Element function to the Unbundle By Name function.

U Wire the Data Type output of the Unbundle By Name function to
the case selector terminal.

O Right-click the Case structure and select Add Case for Every Value
from the shortcut menu.

1 Boolean constants

— Add a False constant inside each case of the Case structure.
Wire these constants to a single tunnel connected to the loop
conditional terminal for the display loop.

— Set the constant to True in the Stop case.

U Release Queue function—This function releases the display loop
queue references.

© National Instruments Corporation 6-21 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

4. Wire the queue reference and error cluster through each case of the Case
structure.

5. Add tlc_Display Queue Reference.ctl from <Exercises>\
LabVIEW Core 3\Course Project\Controls to the Controls
virtual folder. This control enqueues items to this queue from subVlIs.

6. Save the TLC Main VI and the project.

Display Module

Create a module that stores which function the display should perform. As
the application runs, update the display. Complete the following steps to
create the display module.

1. Add the display module files and Display virtual folder to the Modules
virtual folder.

U Right-click Modules in the project tree and select Add»Folder
(Snapsheot) from the shortcut menu.

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\Display directory and click Current Folder
to add the folder and its contents to the project tree. LabVIEW adds
the following files to the project.

— tlc_Display Module.vi
— tlc_Display_ Command Control.ctl.

2. Open tlc_Display Module.vi.

LabVIEW Core 3 Exercises 6-22 ni.com



Lesson 6  Implementing Code

3. Complete the Initialize case as shown in Figure 6-12 by adding a shift

register. The Initialize case stores the queue reference in a shift register.

errar in {na errar)

] Mo Error 't
M "Tnitialize™ R
Command {Update UL)
| [T E ]
tlc_Display Queue Reference.ctl
¥ jorrrrrroll ||:n : i {=

error out

L]

Tyl

s =1

© National Instruments Corporation

Figure 6-12. Display Module Initialize Case
U Wire the queue reference through the other cases.
U Wire all tunnels in the module.

Modify the Update UI case to call the Enqueue Element function to pass
the command and data to the display loop in the top-level VI, as shown
in Figure 6-13. Use the following items to complete this case:

U tlc User Interface Command.ctl—From the Controls
virtual folder.

U Bundle By Name function

U Enqueue Element function

6-23 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

[ "Update UI", Defaul *pf

tlc_User Inkerface Command.ctl

sk Initialize Fronk Panel

Daka Type

Daka Tvpe
= [aka

7}

Figure 6-13. Display Module Update Ul Case

5. Examine the connector pane as shown in Figure 6-14.

[RISPLAY

Data Type B

BEE mgmﬂ
Errar in (no error)

Figure 6-14. Display Module Icon and Connector Pane

Command {Update UI) E—
tlc_Display Queue Reference. .. ISFLA

A

error ouk

6. Save and close the VI.

File Module

The file module saves and loads a file from the application. The file module
accepts an array of cues, a file path, and a command, and returns an array of
cues. The file module performs the Save Cues and Load Cues functions.

1. Add the file module files and File virtual folder to the Modules virtual
folder.

U Right-click Modules in the project tree and select Add»Folder
(Snapshot) from the shortcut menu.

LabVIEW Core 3 Exercises 6-24 ni.com




Lesson 6  Implementing Code

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\File directory and click Current Folder to
add the folder and its contents to the project tree. LabVIEW adds the
following files to the project.

— tlc_File Module.vi

— tlc_File_Command Control.ctl

2. Save the project.

3. Opentlc_File Module.vi and observe the architecture and design
of the module. The module uses standard File I/O VIs to read and write
data.

Testing

Test the functionality of the file module with simple hand tests.

1. Set the Command control to Save Cues.

2. Click the Browse button and set a name and save location for a new file.
The Path control has been set to browse for new or existing files.

3. Enter dummy data in the Cue Array Input.

4. Run the VL.

5. Set the Command control to Load Cues.

6. Run the VL.

7. Verify that Cue Array Output matches the data you entered in
Cue Array Input.

8. Close the VI.

Hardware Module

The hardware module interacts with the Theatre Light Control API. The
hardware module performs the Write Color and Intensity function.

1.

© MNational Instruments Corporation

Add the hardware module files and Hardware virtual folder to the
Modules virtual folder.

U Right-click Modules in the project tree and select Add»Folder
(Snapsheot) from the shortcut menu.

6-25 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\Hardware directory and click Current
Folder to add the folder and its contents to the project tree.
LabVIEW adds the following files to the project.

— tlc_Hardware Module.vi
— tlc_Hardware_Command Control.ctl
2. Open tlc_Hardware Module.vi.

3. Observe the architecture and design of the hardware module. Notice that
the VI calls the Theatre Light Control API.

4. Close the VI.

5. Save the project.

End of Exercise 6-3

LabVIEW Core 3 Exercises 6-26 ni.com



Lesson 6  Implementing Code

Exercise 6-4 Implement Error Handling Strategy

Goal
Develop a module that handles the errors in the application.

Scenario
Handling errors is an important part of developing applications in
LabVIEW. When you are developing the application, you can use error
handling to help find bugs in the applications.
A good error handling strategy is to call a module that stores the error
information and safely stops the application if an error occurs.

Design

Using a functional global variable, store the error information in an
uninitialized shift register. If an error occurs, the VI sends a stop message to
the producer to shut the program down.

Implementation

1. Add tlc_User Event Reference.ctl and tlc_Consumer
Queue Reference.ctl to the project. These custom controls are
references to the user event created by Create User Event and the queue
created by Obtain Queue in the TLC Main VI. These custom controls
stop execution of the producer and consumer loops of the TLC Main VI
if an error occurs.

O Right-click the Controls virtual folder, select Add»File from the
shortcut menu and navigate to the <Exercises>\LabVIEW
Core 3\Course Project\Controls directory.

U Select tlc_User Event Reference.ctl and tlc_Consumer
Queue Reference.ctl and click Add File to add the controls to
the Controls virtual folder.

@ Tip <Ctrl>-click to select multiple files.

2. Add the error module files and Error virtual folder to the Modules
virtual folder.

U Right-click Modules in the project tree and select Add»Folder
(Snapshot) from the shortcut menu.

© National Instruments Corporation 6-27 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

LabVIEW Core 3 Exercises

a

Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Modules\Error directory and click Current Folder to
add the folder and its contents to the project tree. LabVIEW adds the
following files to the project.

— tlc_Error Module.vi

— tlc_Error Module Command Control.ctl

3. Open tlc_Error Module.vi.

4. Modify the block diagram to stop the producer, consumer, and display
loops if an error occurs. Use the following items to complete the case
where the structures are set to Handle Errors, Error, and True, as shown
in Figure 6-15.

a

a

a

Flush Queue function—Use two instances of this function to empty
the queues that control the consumer and display loops in the
top-level VL.

Enqueue Element function—Use three instances of this function.
After emptying the consumer and display queues, you need to add
two elements to the consumer queue and add one element to the
display queue to stop the consumer and display loops.

Create constants for the element input of each instance. For the
consumer queue, set the first enum to Stop and set the second enum
to Exit. For the display queue, set the enum to Stop.

Generate User Event function—This function generates a user event
that can stop the producer loop in the top-level VI.

Merge Errors VI.

6-28 ni.com



Lesson 6  Implementing Code

%ﬁnd Gt oLy [ *Handle Errors”, Default ]
[0
[ Errar -
s .|
errarin (no error) ]
E r i f[True < error out
i status
B T e
¥ =Consumer Quele > =il [ e . = ==
| [wim| ﬂﬂL
tle_Consumer Corkral.ctl tle_Cansumer Conkral.ctl
¥l =Display Queue > sl & m} (m} ={a
¥ xser Event ool & i ==
[ ...

Figure 6-15. Error Handler Error Case

5. Complete all structures by wiring the User Event reference and queue
references through all remaining cases.

6. Browse the VI and observe how it operates.
7. Save and close the V1.

8. Save the project.

End of Exercise 6-4

© MNational Instruments Corporation 6-29 LabVIEW Core 3 Exercises



Lesson 6  Implementing Code

Notes

LabVIEW Core 3 Exercises 6-30 ni.com



Implementing a Test Plan

Exercise 7-1
Goal

Scenario

Design

Implementation

Integrate Initialize and Shutdown Functions

Initialize and shut down a set of code modules.

The Initialize function places the application into a stable mode by
initializing all of the modules and clearing the user interface.

When the user selects the File» Exit menu, the application should safely shut
down. Safely shutting down an application requires closing all open
memory references.

The Initialize function outlined in the requirements document performs the
following actions:

e Initialize Error Module

* Initialize Cue Module

e Initialize File Module

* Initialize Hardware Module
e Initialize Display Module

* Enable Front Panel Controls
* Initialize Front Panel

* Update Cue List

Each module is designed to close any open memory references when the
shutdown function is called. The Shutdown VI accesses the shutdown
function for each module. The Shutdown VI also sends a Stop message to
the display loop to finish execution of the loop. The display, hardware, and
file modules need to shut down. You can re-initialize the Cue module to
delete any Cues that are stored in the persistent shift register.

The implementation of the Initialize VI involves calling the modules that
you built and wiring the correct data type to them. There is not a specific

© National Instruments Corporation 7-1 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

order in which you must call the VIs. Follow the order in the Design section
to be complete.

Initialize
1. Add the integration files and Integration virtual folder to the project.

O Right-click My Computer in the project tree and select Add»
Folder (Snapshot) from the shortcut menu.

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Integration directory and click Current Folder to
add the folder and its contents to the project tree.

2. Open tlc_Initialize.vi.

3. Complete the block diagram as shown in Figure 7-1. This VI initializes
the modules that you have already created. The block diagram already
includes these modules. Use the following items to initialize the
modules:

U Numeric constant—Create this constant with a representation of U8
and a value of 0. This constant specifies whether the controls of the
main user interface are enabled or disabled. A value of zero enables
the controls.

O To Variant function—This function converts a numeric to the variant
datatype, which is passed to the Data input of the tlc_Display
Module VI.

@ Note In later instances, the Data input of the tlc_Display Module VI is set to 2, which
disables the controls.

U Right-click the Command input of tlc_Error Module VI, select
Create»Constant and set the constant to Initialize. Repeat for each
of the following modules, as shown in Figure 7-1:

— tlc_Cue Module VI
— tlc_File Module VI
— tlc_Hardware Module VI
— tlc_Display Module VI
U Right-click the Data Type input of the second instance of the
tlc_Display Module VI. Select Create Constant and set the value

as shown in Figure 7-1. Repeat this step for the third and
fourth instances of tlc_Display Module VI.

LabVIEW Core 3 Exercises 7-2 ni.com



Implementing a Test Plan

Lesson 7

uoouny azifenu| “j- ainfig

o Joda

*351| 2N 2y 2gepdn pue ‘|laued Juouy 2y S I
's|ou3u03 [aued Jucy a4 3jgeuS 0] Anpoul
Tt 3

Apqdsip auy 2sn ‘snpow yoes uy

‘13aioad au3 4o pajeal
Usa 8ARY JEY) SENPOW B3 Jo YoES SRlERIU]

s|ounD SjeU3

FEn

S[EUURLD JO JS0UNK

12" 80USda 3 SNand JSUnsuns )

: =]

|37 aouaiayay anand ARjdsig o)y

g
1 anpay Aeidsig o)

(& 351 a0 a3Epdr o

14 3Npal) ARSI

o [BUEd J00.4d SZIENIUT o]

1 'anpold 4805 [

(& 5043003 [BUEg 1000 S|qesIg EqEUT ]

a1
Core |

1 aInpok) AR(dsid o I BINPOLY AURMPUEH I3 1A 3P0 24 )1 14 8NP0 EnT 0

add] B3R

add] B3R add] BB

(1M 838pdn) puBwwoD

MP EE

14" BNPol) 0L

(2444) PUBIWIOD  PUBLILIOT

PUELILIOT

(510443 2|pUEH) PUBLIWOD

{40442 ouj ulJods

LabVIEW Core 3 Exercises

7-3

© National Instruments Corporation



Lesson 7 Implementing a Test Plan

4. Modify the connector pane for the tlc_Initialize VI, as shown in
Figure 7-2.

Mumber of Channels ﬂﬂmﬂmﬂg

tlc_User Event Reference, ctl

tlc_Display Queus Reference,,
Elc_Consumer Queus ReFerenc. L EE
Error in (no error)

errar out

Figure 7-2. Initialize Function Icon and Connector Pane
5. Save and close the VI and save the project.
6. Open the TLC Main VI.

7. Integrate t1lc_Initialize.vi into the consumer loop of the TLC
Main VI as shown in Figure 7-3. This case executes when the
application starts. To build the case, use the following items:

@ Note As you integrate each function into the application, delete the Format Into String
and One Button Dialog functions in the corresponding case of the Case structure.

U tlc_Initialize.vi—Add this VI to the Initialize case of the
consumer loop.

U Number of Channels—Create this constant from the Number of
Channels input of the tlc_Initialize VI. This determines the number
of rows and channels to initialize in the Cue Information indicator.
Set the values of this constant to initialize 4 rows and 4 columns.

@ Note The labels for the cluster constants in Figure 7-3 have been made visible to
differentiate between the parameters in each cluster.

[This loop is a consumner loop, |

[ "Initialize”, Defaulk T T 3

=. Bl Command Mumnber of Channels
=0 Data Rows Columns Y
:
exrerererees | ser Event > o T

cerrrrrrerce =Display QUEUe s o

= =Consumer Queus s o

Figure 7-3. Initialize Case in Consumer Loop

LabVIEW Core 3 Exercises 7-4 ni.com



Lesson 7 Implementing a Test Plan

8. Wire the Initialize case of the consumer loop.
U Wire the user event out output of the Create User Event function
outside the While Loops to the tlc_User Event Reference.ctl input
of the tlc_Initialize VL
U Wire the queue out output of the Obtain Queue function outside the
display loop to tle_Display Queue Reference.ctl input of the
tlc_Initialize VI.
U Wire the queue out output of the Dequeue Element function inside
the consumer loop to the tlc_Consumer Queue Reference.ctl input
of the tlc_Initialize VL
9. Save and close the VI.
Shutdown
1. Open tlc_Shutdown.vi from the Integration virtual folder.
2. Complete the block diagram as shown in Figure 7-4.
Data Type Command (Update UI)  Command {Wwrite) Command Cammand
[*stap +] |#shutdown =] [eshutdown =] |+ shutdown =] [+ Initialize ~)
Tglr :n (no error) L :iﬁ |:n:::| a Ir’% e’r%nut

4.

Testing

Figure 7-4. Shutdown Function

1 Because the Cue module is set to Initialize, it initializes the shift
register in the Cue module with an empty Cue array.

Save and close the VI.

Open the TLC Main VI and add the tlc_Shutdown VI to the Exit case of
the consumer loop. Run the error wire through the tlc_Shutdown VI.

Save the VI.

Run the TLC Main VI and select File»Exit. Verify that the shutdown
function causes the application to end. After you integrate the display
functionality, you also can verify that the initialize function executes.

End of Exercise 7-1

© MNational Instruments Corporation

7-5 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Exercise 7-2
Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Integrate Display Module

Update the front panel controls.

The application architecture splits the functionality into three separate
loops. The producer loop uses an Event structure to monitor changes to the
front panel. The consumer loop handles all the processing for the
application. The display loop updates the user interface. The advantage of
this architecture is that functionality is contained within individual parallel
processes. This improves the performance and stability of the application.
The three loop architecture also improves the maintainability and scalability
of the application.

Implement the code in the display loop to update the user interface.

In order to perform the functions specified in the requirements document,
you need to have the following display functions:

* Initialize Front Panel

* Update Front Panel Channels

* Select Cue in Cue List

* Enable/Disable Front Panel Controls
e Update Cue List.

Implement these functions in the display loop of the top-level VI. The
advantage to implementing this code in the top-level VI is that you have
direct access to the front panel terminals.

Edit the following cases in the display loop Case structure of the TLC
Main VI.

Initialize Front Panel

This case initializes the 2D array of channels in Cue Information to the
color black and the intensity zero. It also increments channel numbers
across the array.

7-6 ni.com



Lesson 7 Implementing a Test Plan

1. Modify the Initialize Front Panel case as shown in Figure 7-5 using the
following items.

U tlc_Cue Module.vi—Initializes the 2D array of channels in
Cue Information.

U Create a constant from the command input of the tlc_Cue Module
VI and set its value to Get Empty Cue. This sets the Cue Module to
return an empty cue with an intensity of zero, a color of black, and
configured channel numbers.

U Cue Information local variable—Right-click the Cue Information
terminal and select Create»Local Variable from the shortcut menu.

[This loop is the display laop. ] _
[ "Initialize Front Panel" -
Zommand

4+ Get Emply Cug ™

nﬁ}% Zue Information

Data Tvpe
. BT oae IR

|

][
o !

Figure 7-5. Initialize Front Panel

Initialize the Front panel by obtaining an
empty cue and writing it to the Cue
Information indicatar,

2. Save the VI

Select Cue in Cue List

This case highlights a row in the Cue List when the user selects a cue or
as the application iterates through cues.

1. Modify the Select Cue in Cue List case of the display loop as shown in
Figure 7-6. Use the following items:

U Variant To Data—Converts the variant datatype of Data into the
datatype specified by the type input.

U 132 Numeric constant—Converts Data into this datatype.

1 Cue List terminal—Move this terminal into the Select Cue in
Cue List case of the display loop.

© National Instruments Corporation 7-7 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

LabVIEW Core 3 Exercises

[This loop is the display loop. |
T["Seleck Cue in Cue List" - pf
B I32 Numeric
L Data Type Cue List
. [T [ Dan |8
=0 i =
hihien the user selects a
qiven cue, update the cue
list to highlight the selected ] D, - S
cue. E

Figure 7-6. Select Cue in Cue List Case

2. Save the VL

Enable/Disable Front Panel Controls
This case enables or disables the Record and Cue List controls.

1.

Modify the Enable/Disable Front Panel Controls case as shown in
Figure 7-7. Use the following items:

a

Cue List Property Node—Right-click the Cue List terminal or
indicator and select Create»Property Node»Disabled. Right-click
the Property Node and select Change All To Write.

Record Property Node—Right-click the Record terminal or button
and select Create»Property Node»Disabled to create the Record
Disabled Property Node. Right-click the Property Node and select
Change All To Write.

O Variant to Data function

U8 Numeric constant—Connect this constant to the type input of
Variant to Data to set the data output to the correct datatype for Cue
List. A data output of 0 enables the controls. A data output of 1
disables the controls. A data output of 2 disables and dims the
controls.

7-8 ni.com



Lesson 7 Implementing a Test Plan

[This loop is the display loop. |
[ "Enable/Disable Fronk Panel Controls”

LIS Murmeric

Data Type ;
2. BT [ oas

Zue Lisk Record
¢——PDisabl=d)| ’—"Disabled|

A Daka walue of O enables the contrals.
4 value of 2 will disable and gray out
the contrals.

Figure 7-7. Enable/Disable Front Panel Controls Case

@ Note Coercion dots appear where you wire data to the Property Nodes because the
Property Nodes expect an enum instead of a numeric value.

2. Save the VI

Update Cue List

This case retrieves the recorded cues and updates the Cue List. After you
determine the number of cues, obtain and display the names of the cues in
order.

1. Modify the Update Cue List case of the display loop as shown in
Figure 7-8. Use the following items:

4 For Loop
O First instance of t1c_Cue_Module.vi
— Add the VI inside the Case structure and outside the For Loop.

— Right-click the command input of the Cue Module. Select
Create Constant and set the value to Get Number of Cues to
return the number of cues in the current Cue List.

— Wire the Number of Cues output to the count terminal of the
For Loop to execute the loop once for each cue in the list.

U Second instance of t1c_Cue_Module.vi
— Add the VI inside the For Loop.

— Right-click the command input of the Cue Module and select
Create Constant. Set the value to Get Cue Values to return a

© National Instruments Corporation 7-9 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

cluster containing the cue name, wait time, fade time, follow
time, and the 2D array of channels associated with the cue.

— Unbundle By Name—Wire Cue Output from the Cue Module
to the input cluster to retrieve the Cue Name element.

O Wire the error clusters of the Cue Module VIs through the For Loop.
Create shift registers on the For Loop error tunnels.

U Cue List Property Node—Create a Property Node to modify the
Item Names property of the Cue List indicator.

— Right-click the Property Node and select Change All To Write
from the shortcut menu.

— Wire the Cue Name output of the Unbundle By Name function
to the Cue List Property Node.

— Verify that auto-indexing is enabled for the Cue Name For Loop
output tunnel.

is loop is the display loop. |
[This loop is the display | |
[ "Update Cue List" - pf 2|
Zomrmand |Update the cue lisk whenever a cue
Data Type B [ Get Number of Cues =) is loaded or recorded.
Y It
[ =.. [3f] Dats |l el TN )
B Cue List
0070 - Zommand -
4HGet Cue Yalues ¥

Figure 7-8. Update Cue List Case

2. Save the VI.

Update Front Panel Channels

This case updates the value of the 2D array of channels. The VI calls this
case every time the channel data changes, such as when a cue is playing and
the channel intensities and colors change. The VI also calls this case when
the user selects a cue from the Cue List to display the information for the
selected cue.

LabVIEW Core 3 Exercises 7-10 ni.com



1.

N

Testing

3.

4.

Lesson 7 Implementing a Test Plan

Modify the block diagram for the Update Front Panel Channels case of
the display loop as shown in Figure 7-9. Use the following items:

O Variant To Data function

U tlc_Cue_Information.ctl—Add this control to the block
diagram as a constant and wire it to the type input of the Variant to
Data function. This converts the Variant input of Variant to Data to
a cue in order to display the cue information.

O Cue Information terminal—Move this terminal into the Update
Front Panel Channels case of the display loop.

[This loop is the display loop.]
T "Update Fronk Panel Channels” - 3
tle_Cue_Information.ctl
Diata Type
=+ L
[ .. [Af] Data [
=0
Pass Data from the calling subvl R —— —
o Cue Information, |
"]

Figure 7-9. Update Front Panel Channels Case

Save the VI.

Run the VI.

The VI calls the Initialize function. The function initializes the front
panel. All the front panel channels should initialize with the correct
channel numbers and the color black.

Select File»Exit to exit the VI.

Close the VI.

End of Exercise 7-2

© National Instruments Corporation

7-11 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Exercise 7-3
Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Integrate Record Function

Pass data from the user interface to the rest of the application. Use an Event
structure to create a dialog box where the user enters cue information to
record a cue.

The record function must prompt the user for the Cue Name, Wait Time,
Fade Time, Follow Time, and settings for the channels. Prompt the user with
a dialog box where the user can enter values. The values are passed to the
Cue module and the user interface updates.

A Record dialog box has been created using the Dialog Based Events
framework. This framework uses an Event structure to monitor user
interface events. Complete the functionality to retrieve the inputs from the
user. Pass a Cue Data type from the producer loop into the consumer loop to
store the recorded cue in the application. Use a variant for the design pattern
makes it easier to perform this functionality.

1. Open the tlc_Record Dialog Box VI from the Integration virtual folder.
When this dialog box displays, the user enters values for Cue Name,
Wait Time (s), Fade Time (s), and Follow Time (s) and sets cue
intensities and colors in the channel array.

2. Set the minimum value for Fade Time (s) to one second.
O Right-click the control and select Data Entry.

O Remove the checkmark from Use Default Limits and enter 1 as the
Minimum value.

Q Click OK.

3. Open the block diagram and create a constant from the command input
of the tlc_Cue Module VI. Set the command to Get Empty Cue,
as shown in Figure 7-10.

7-12 ni.com



Lesson 7 Implementing a Test Plan

=] Bl[0]"OK": value Change  ~]

This ¥ was created based on a Dialog Using
Ewents WI created From a template.

[File s hew 4T From
TemplatesFrameworks»Dialag Using Events.

lindicator for use in the calling YL,

when the user clicks "0k, " read the contents of Cue
[[nformation and pass the values to the Qukput Cue

OOO 000000 OO OoD

j#Get Emply Cue |

Brror in (no error)

Output Cue

Cue Infarmation Cue Information
I3
g

; =3

! ]

error out

DOooooooooooooon

[

]

=)

Cancelled? ancelled?
bTE

Figure 7-10. Record Function Dialog Box

4. Modify the connector pane to pass the Output Cue parameter, as shown

in Figure 7-11.

TLE

................. cancelled?

9

E=Qutput Cue

errar in {no error)

B arpor Qb

Figure 7-11. Record Dialog Box Connector Pane

5. Prepare the VI for use as a dialog box. When complete, it should be

similar to Figure 7-12.

U Modify the front panel of the VI to expand the input cluster, align the

objects, and hide the error clusters.

Resize the front panel to show only the buttons and the input cluster.

Select File» VI Properties, and select Window Appearance from
the Category pull-down menu. Verify that window style is set to
Dialog. Change the Window Title to Cue Record and click OK.

© National Instruments Corporation 7-13

LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

LabVIEW Core 3 Exercises

Channel 0 Chanmel 0 Thannel 0 Channel 0
Intensity |0 Intensity 0 Intensity 0 Intensity |0
Cug Marme
Color [ Color [ Color [N Color [
‘Wit Time {s) |0
Chanmel 0 Chanmel 0 Chanmel 0 Chanmel 0
Fade Time (s} |0
Inkensity 0O Intensity O Intensity 0O Inkensity 0O
Follaw Time (s} |0 Color [ Color [ Color [ Color [
Chanmel 0 Chanmel 0 Chanmel 0 Chanmel 0
Inkensity 0O Intensity O Intensity 0O Inkensity 0O
Color [N Color [ Color [ Color [N
Chanmel 0 Chanmel 0 Chanmel 0 Chanmel 0
Inkensity |0 Intensity 0 Intensity 0 Inkensity |0
Color [ Color [ Color [ Color [
[ Ok l [ Cancel ]

Figure 7-12. Front Panel of Record Dialog Box

6. Save and close the VI.

7. Modify the TLC Main VIto call t1c_Record Dialog Box.vi inthe
producer loop and pass the Cue data to the Record function in the
consumer loop as shown in Figure 7-13. Use the following items:

a

tlc_Record Dialog Box.vi—Obtains the cue that the user
wants to record.

Case structure—Add the Case structure around the Enqueue
Element and Bundle By Name functions, and make this case False.

— Wire the Cancelled? output of the tlc_Record Dialog Box VI to
the case selector terminal. If the user cancels or closes the dialog
box, no cue should be recorded.

To Variant function—Wire the Output Cue of the tlc_Record
Dialog Box VI to this function to convert it to the variant datatype
the Bundle By Name function requires.

Wire the queue refnum and error wires through the True case.

7-14 ni.com



Lesson 7 Implementing a Test Plan

[This loop is the producer loop.
Z] o T

tlc_Record Dialog Box,vi

tle_Consurmer Control.ctl

Command —
sk Initialize ¥
P Fraary ElideT ]
L {command
‘ariank W Data

Enqueue Element:

) =
[icgun|

(Obtain & cue from the user and send the cue
ko the consumer loop,

Record ikl

I source

Figure 7-13. Record Event Case
8. Save the VL.

9. Test the TLC Main VI. Verify that the Cue Record dialog box appears
when you click Record. After clicking OK in the Cue Record dialog
box, a One Button Dialog should appear indicating that you are in the
Record case of the consumer loop. Click OK.

10. Select File»Exit to stop the VI.

11. Open the tlc_Record VI from the Integration virtual folder and
examine the block diagram. The VI first uses the display module to
update the 2D array of channels. Next, it calls the cue module to add the
new cue to the functional global variable cue array. Finally, it calls the
display module again to update the Cue List.

12. Close the VI.

13. Modify the consumer loop to call the Record VI and convert the variant
data into data that the Record VI can accept. Figure 7-14 shows the
completed Record case in the consumer loop. Use the following items:

O Variant To Data function

U tlc_Cue_Information.ctl constant

U tlc_Record.vi

© National Instruments Corporation 7-15 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

[This loop is a consumer loop.

= 2., Zommand

=0 Draka

e | | ”Record" .‘r'.‘r'.‘r'.‘r'
te_Cue_InfFormation. ct

TLZ

te_Record.wi

Retrieve the cue that has been created by the
Record Dialog and add it to the Cue List,

i

Figure 7-14. Record Case in Consumer Loop

14. Save the VI.

Testing

1. Run the TLC Main VL.

2. Click Record and record a cue.

3. [If the application is running correctly, the front panel displays the cue
you recorded, and the Cue List updates with the name of the cue that you
entered in the Cue Record dialog box.

4. Select File»Exit to stop the VI.

@ Note If time permits, proceed to Exercise 7-7. Alternately, you can copy the save and
load functionality into your project at the beginning of Exercise 7-5.

End of Exercise 7-3

LabVIEW Core 3 Exercises

7-16

ni.com



Exercise 7-4
Goal

Scenario

Lesson 7 Implementing a Test Plan

Integrate Play Function

Execute a state machine design pattern in a producer/consumer (events)
design pattern.

The Play functionality for the Theatre Light Controller is best implemented
as a state machine. Figure 7-15 shows the states of the Play function.

A\ 4 Cue
Exists
Initialize P Begin Play »  Load Cue P Wait Time
A
Cue Does Not Exist Cue Exists

Cue
Does Not \ 4

Exist Check for | 4
Next Cue

Follow Time |< Fade Time

Figure 7-15. Play Function Flowchart

Implementing a state machine inside a producer/consumer (events) design
pattern requires some insight into how the producer/consumer (events)
design pattern operates. As you have seen in previous exercises, the design
pattern receives an event in the producer loop and sends a message to the
consumer loop to do some computation on the event. The consumer loop is
designed to compute a single message from the producer. Implementing a
state machine requires a looping mechanism that is not native to the
producer/consumer (events) design pattern. You can approximate a loop
with the producer/consumer (events) design pattern by placing a message in
the consumer queue. In your application, you want to stay in the Play
function to implement the wait, fade, and follow timing requirements for the
application. Add messages in the consumer queue to stay in the Play case in
the consumer loop until the Play function completes. This method of
implementing a state machine inside the producer/consumer (events) design
pattern introduces some complexities when you implement the capability to
stop a play.

© National Instruments Corporation 7-17 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Design

Implementation

LabVIEW Core 3 Exercises

The Play function uses a state machine and the timing module to implement
the wait, fade, and follow timing requirements.

After you develop the play module, integrate the play function into the TLC
Main VI.

Build the play functionality to add in the consumer loop. Start by examining
the play VIs.

I.

Open tlc_Play_Update Cue.vi from the Integration virtual folder
and examine how the VI operates.

The VI calls the Light Color Controller VI, which calculates a color
based on desired color, desired intensity, elapsed time, and target time.

The VI sends a command to the hardware module and display module.
U Close the VL.

Open tlc_Play.vi from the Integration virtual folder and examine
how the VI operates. The VI uses a state machine to perform the Wait,
Fade, and Follow timing requirements for the application.

The VI uses the state machine design pattern with a True constant wired
to the loop conditional terminal. This VI is designed to be called
repeatedly in order to move from one state to the next. To control the VI,
the state machine returns a Boolean value to indicate whether the cue list
has completed execution. Examine how the Initialize, Begin Play, and
Load Cue states operate.

Modify the Wait Time state in the tlc_Play VI to use the tlc_Timing
Module functional global variable to control the timing, as shown in
Figure 7-16. Use the following items:

U Unbundle By Name function—Wire Current Cue to this function
and set the cluster element to Wait Time (s).

U tlc_Timing Module.vi
— Add two tlc_Timing Module VIs inside the Wait Time state.

— Right-click the Timer Command input of each instance of the
tlc_Timing Module VI and select Create»Constant. Set each
constant as shown in Figure 7-16.

7-18 ni.com



Lesson 7 Implementing a Test Plan

1 " ait Time" faa
Wait {rs)

Play ctl

Erter the Wait Tima state of the Timing Madule. |
The weait: bime is determined from the currentlly playing cue.

Select

[ True Vt
- Check Time |
Unbundle By Mame tHc| Timing Module, wi tlc| Tiring Module. i
Wiait Time (5) ] o

B | ;

Figure 7-16. Play Module Wait Time Case
U Case structure

— Add the Case structure around the second tlc_Timing Module VI
and ensure that this VI is in the True case.

— Wire the Done? output of the tlc_Timing Module VI to the case
selector terminal. If the tlc_Timing Module VI outputs True
from Done?, the Case structure sends the timing module a Start
command to set a new start time.

— Wire the error cluster through the False case.

4 Select function—Wire the Select function output to the top Case
structure output tunnel. This tunnel is wired to the While Loop shift
register. When the tlc_Timing Module VI outputs True from the
Done? output, the Select function transitions the state machine to the
Fade Time state.

U Wait (ms) function—Add a Wait (ms) function to the case and wire
a numeric constant of 25 to the Wait function.

© National Instruments Corporation 7-19 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

4. Modify the Fade Time state in the tlc_Play VI to use the tlc_Timing
Module functional global variable to control the timing as shown in
Figure 7-17. Use the following items:

U Unbundle By Name function—Wire Current Cue to this function
and set the cluster element to Fade Time (s).

O tlc_Timing Module.vi
— Add two copies of this VI inside the Fade Time state.

— Right-click each tlc_Timing Module VI and select Create»
Constant. Set each constant as shown in Figure 7-17.

1 "Fade Time" p]

Wait (ris)

Play ctl

-+ Follow Time |

Enter the Fade Time state of the Timing Module,
The Fade time is determined from the currentlly plaving cue,

Select

Unbundle By Name

“E Fade Time {5}

4+ Check Time |
tlc| Timing Module. vi tc| flay_Update Cue.vi

|F7| = P

Figure 7-17. Play Module Fade Time Case

U tlc_Play Update Cue.vi—Wire the terminals of this VI as
shown in Figure 7-17.

LabVIEW Core 3 Exercises 7-20 ni.com



a

Lesson 7 Implementing a Test Plan

Case structure

— Add the Case structure around the second tlc_Timing Module
VI, and ensure that this VI is in the True case.

— Wire the Done? terminal of the tlc_Timing Module VI to the
case selector terminal. If the tlc_Timing Module VI outputs True
from the Done? output, the Case structure sends the tlc_Timing
module a Start command to set a new start time.

— Wire the error cluster through the False case.

Select function—Wire the Select function output to the top Case
structure output tunnel. This tunnel is wired to the While Loop shift
register. When the tlc_Timing Module VI outputs True from the
Done? output, the Select function transitions the state machine to the
Follow Time state.

Wait (ms) function with a 25 ms wait.

Modify the Follow Time state in the tlc_Play VI to use the tlc_Timing
Module functional global variable to control the timing as shown in
Figure 7-18. Use the following items:

a

a

Unbundle By Name function—Wire Current Cue to this function
and set the cluster element to Follow Time (s).

tlc_Timing Module.vi—Right-click the tlc_Timing Module VI
and select Create»Constant. Set the constant to Check Time.

Select function—Wire the Select function output to the top Case
structure output tunnel. This tunnel is wired to the While Loop shift
register. When the tlc_Timing Module VI outputs True from the
Done? output, the Select function transitions the state machine to the
Check for Next Cue state.

Wait (ms) function with a 25 ms wait.

6. Save and close the tlc_Play VI.

© MNational Instruments Corporation

7-21 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

1 "Fallow Tirme" ]

Wait {ms)

Play.ctl

[+ Check for Mext Cue )

Enter the Follow Time state of the Timing Module,

The Follow kime is determined from the currentlly playving cue. Select

+Fallow Time 7|

+Check Time |
Unbundle By Name tlc| Timing Module. i
“E Follow Time {s) e

|Fe

Figure 7-18. Play Module Follow Time Case

7. Open TLC Main VI and modify the Play state in the consumer loop to
call the tlc_Play VI. Add the functionality to repeatedly call the tlc_Play
VI, as shown in Figure 7-19. Use the following items:

O Case Structure—Wire the Stop? output of the tlc_Play VI to the case
selector terminal.

U Enqueue Element function

tlc_Consumer Control.ctl constant—Set the enum for the
constant to Play.

U Run wires through the True case.

LabVIEW Core 3 Exercises 7-22 ni.com



Lesson 7 Implementing a Test Plan

[This loop is a consumer loop. |

Zommand
Draka

Queueing another Play elemant From within
the play case results in a queue loop until
such time as the Play has completed. | B

Figure 7-19. Play Case in Consumer Loop

8. Save the VL.

Testing

At this point, you can run the VI, record a cue, and play back the cue.
1. Run the VL

2. Record a cue with a single channel that contains a color other than black,
and an intensity of 100. Set the Wait time to 0, Fade time to 10, and
Follow time to 0. Click OK.

3. Click Play.

4. The channel that you recorded should fade from 0% to 100% intensity
within 10 seconds.

5. Try recording another cue and observe the response of the system.

6. Select File»Exit to stop the VI.

@ Note If time permits, proceed to Exercise 7-8. Alternately, you can copy the stop
functionality into your project at the beginning of Exercise 7-5.

End of Exercise 7-4

© National Instruments Corporation 7-23 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Exercise 7-5 Integrate Error Module

Goal

Integrate an error handling module into the design pattern.

Scenario

When working on large applications, it is often helpful to distribute the
development effort for the project among several developers. Another
developer received a copy of your code after you integrated the Play
functionality. That developer has integrated the Save, Load, and Stop
functions into TLC Main.vi. Before you can integrate your error handling
module into the design pattern, you must overwrite your working copy of
the TLC project with their files.

@ Note Refer to Exercise 7-7 and Exercise 7-8 for more information about the changes the
developer made. If you want to make these changes yourself, complete Exercise 7-7 and
Exercise 7-8 before you begin Exercise 7-5.

The Error module that you built is designed to safely shutdown the
application if an error occurs. Shutting down the producer loop requires
sending a user event to the producer loop. Shutting down the consumer loop
requires placing an Exit message in the queue. Shutting down the display
loop requires placing a Stop message in the queue.

When designing and developing an application, be mindful of how the
application should respond when an error occurs. With the Theatre Light
Controller, an error should cause the system to gracefully shut down by
executing the cases in each of the application loops that cause the loops to
stop.

Design

Update the TLC project to the current version and modify the TLC Main VI
to call the Error module after each computation in the producer, consumer,
and display loop.

Implementation

1. Copy the updated version of the TLC project and overwrite your
working copy of the code.

@ Note If you have completed self-study Exercises 7-7 and 7-8, skip to step 3 of this
exercise.

Q Close the TLC project and the TLC Main VI.

LabVIEW Core 3 Exercises 7-24 ni.com



a

Lesson 7 Implementing a Test Plan

Navigate to <Exercises>\LabVIEW Core 3\
Stop-Save-Load\ and copy TLC.lvproj and TLC Main.vi
to the clipboard.

Navigate to <Exercises>\LabVIEW Core 3\Course
Project\ and paste TLC.lvproj and TLC Main.vi. When
prompted, overwrite the existing files.

Open the TLC project and the TLC Main VI.

Test the new code.

a

a

Run the TLC Main VL

Record a cue and play it. Verify the stop functionality by clicking the
Stop button during play.

Select File»Save and save the data file as File Test.dat in the
<Exercises>\LabVIEW Core 3 directory.

Stop the VI by selecting File»Exit.

O Run the TLC Main VL

a

a

Load File Test.dat by selecting File»xOpen and navigating to
the <Exercises>\LabVIEW Core 3 directory.

Play the loaded cue list and verify that the cues match the saved cues.

Select File»Exit to stop the VI.

Modify the TLC Main VI to call the Error module after each
computation in the producer, consumer, and display loop, as shown in
Figure 7-20. Use the following items:

a

tlc_Error Module.vi—Add an Error module to each loop to
handle any errors that occur and stop all loops in the event of an
error. Add another instance after the Destroy User Event function.

Set the command of the last Error module to Report Errors
because this instance returns any errors that occurred.

Simple Error Handler VI—If an error occurs, this VI displays a
dialog box that returns a description of the error.

4. Save the VI.

© MNational Instruments Corporation

7-25 LabVIEW Core 3 Exercises



Implementing a Test Plan

Lesson 7

9|NPOJN 10413 YUM UIa)ed ubisaq Jawnsu0n/48anpoid "02-L ainbi4

14" SINPO A043T )y

L3035, T

- eea [ Ao

14 SINpOL) 40443 3]

nedoig o

+doo| Jaunsund e 5| doo) sy

[+ &)
b # | |
Ve 7]
1At 0Ag Jyiads Jea :
....... ﬂ B | w=aI]]
EEEEE
= 0,

o (48] UD2S[RS NUEW 5 =]

*doo) sesnpoud s 5| doo) si 1]

ni.com

7-26

LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Testing

1. Test the error handling capability by placing a Diagram Disable
structure over the Clear Specific Error VI in the producer loop.

You can use the Diagram Disable structure to comment out code when
you want to test functionality or isolate problem areas.

Q In the producer loop, navigate to the False case in the Open case of
the Menu Selection User Event structure, as shown in Figure 7-21.

[This loop is the producer loop. |
= l[[3] Menu Selection (User) =]

T Cpen” ,t

1| False "t
Fil= Dialo§2
M[Disabled
M 1temTag @] ——
B r Clear Specific Error, vi
----- 43
R é/ tc_Error Module.wi
___________ E [ - . ERFOFR:

=1

Figure 7-21. Producer Loop with Diagram Disable Structure

U Add the Diagram Disable structure from the Structures palette to
enclose the Clear Specific Error VL.

O Switch to the Enabled case in the Diagram Disable structure, and
wire the error cluster through the case as shown in Figure 7-22.

[This loop is the producer loop. |

= la[[5] Menu Selection (User) >

T "Cpen”
M[False =

File Dialogz

[l TtemTag

B : : tle_Error Module, wi
N — L = P — . ERROR

Figure 7-22. Enabled Case of Producer Loop with Diagram Disable Structure

2. Save the VI.

© National Instruments Corporation 7-27 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Challenge

LabVIEW Core 3 Exercises

3.

4.

5.

Run the VI.
U Select File»Open from the menu.
U Click Cancel in the File dialog box.

U If the error module works correctly, the Simple Error Handler VI
displays a dialog box indicating that Error 43 occurred, and the
application stops because the error module stops each loop in the
application.

Enable the case of the Diagram Disable structure that contains the Clear
Specific Error VI.

U Switch to the block diagram and navigate to the Disabled case of the
Diagram Disable structure.

U Right-click the border of the Diagram Disable structure and select
Enable This Subdiagram.

Save the VI and the project.

Integrate the Select Cue function to update the user interface with the values
in a selected recorded cue. There are two primary tasks that must be
implemented to build the Select Cue functionality. The Select Cue function
must acquire the cue values for the selected cue and update the front panel
with the cue values.

1.

2.

Modify t1lc_Functions.ctl to contain a Select Cue item.
Change the Cue List indicator to a control.

Modify the Event structure in the producer loop to contain a "Cue
List":Value Change event case.

Modify the producer loop to pass the index of the selected cue to the
consumer loop.

Modify the consumer loop to get the selected cue value and update the
front panel.

To test your changes, record several cues. Click each row in the cue list.
The Cue Information cluster should update with the information for
each cue that you select.

End of Exercise 7-5

7-28 ni.com



Exercise 7-6
Goal

Lesson 7 Implementing a Test Plan

Stress and Load Testing

Perform stress and load testing on the application.

Scenario

Before releasing an application, you must perform a set of system level tests.
These tests can consist of usability testing, performance testing, stress, and
load testing.

Design

Create a large set of cues stored in a file that contain random wait times, fade
times, follow times, channel colors, and intensities. The VI that creates the
large set of cues requests maximum values to use for the wait, fade, and
follow times so that it is easier to analyze the functionality of the

application.
Implementation

1. Open System Testing Driver.vi from the <Exercises>\
LabVIEW Core 3\Course Project\System Testing directory.

2. Open the block diagram and examine how this VI uses the modules that
you implemented to create a large set of Cues.

3. Set the following front panel controls:

*  Number of Cues =2000

*  Maximum Wait Time = 0

* Maximum Fade Time = 5
Maximum Follow Time = 0

4. Run the VL.

5. When prompted, save the file as Stress Load Test.dat in the
<Exercises>\LabVIEW Core 3\Course Project\System
Testing folder.

6. Run the TLC Main VI

7. Select File»Open to load Stress Load Test.dat from the

© MNational Instruments Corporation

<Exercises>\LabVIEW Core 3\Course Project\System
Testing folder.

7-29 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

8. Click Play.

9. Open the Windows Task Manager and monitor the memory usage and
performance of the Theatre Light Controller. Running TLC Main VI
with a large number of cues can indicate if there is a memory or
performance issue with the application.

10. Stop the TLC Main VL

11. Select File»Exit to stop the VI.

End of Exercise 7-6

LabVIEW Core 3 Exercises 7-30 ni.com



Lesson 7 Implementing a Test Plan

Exercise 7-7  Self Study: Integrate Save and Load Functions

Goal
Use a scalable data type to pass data from the consumer to the producer.

Scenario
The file save and load functionality are important for the lighting designers
who use the software. Most theatres orchestrate the lighting for a production
during dress rehearsals and the lighting designer uses the same lighting cues
from dress rehearsal for opening night and beyond. Save and load
functionality is important for any large scale application.

Design

Modify the producer loop in the TLC Main VI to prompt the user for the file
name. Several checks need to occur to determine if the user cancels the file
operation or tries to open a file that does not exist.

Modify the Save case in the consumer loop to get the values stored in the
cue module and pass the recorded Cues to the file module.

Modify the Load case in the consumer loop to open the file and extract the
saved cues, while populating the cue module with the saved cues.

Implementation

@ Note The code changes described in this exercise are integrated into the TLC Main VI
as step 1 of Exercise 7-5. The purpose of this exercise is to describe the changes that were
made to integrate the save and load functions into the application. If you are working
through all the Lesson 7 exercises, you should complete this exercise after Exercise 7-3.

Modify the Save case in the consumer loop to get the values stored in the
cue module and pass the recorded Cues to the file module.

Save
1. Add the shared files and Shared virtual folder to the project.

O Right-click My Computer in the project tree and select Add»
Folder (Snapshot) from the shortcut menu.

U Navigate to the <Exercises>\LabVIEW Core 3\Course
Project\Shared directory and click Current Folder to add the
folder and its contents to the project tree.

2. Open the TLC Main VI.

© National Instruments Corporation 7-31 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

LabVIEW Core 3 Exercises

3. Modify the Save case in the Menu Selection event of the producer loop,
as shown in Figure 7-23. Use the following items:

Q File Dialog Express VI

— Launches a dialog box to select a file to load. Verify that
Limit selection to single item is selected. Select File and New.
Click OK.

— If the user selects an existing file, the File Dialog Express VI
prompts the user to replace the file. The File Dialog Express VI
returns True for the exists output if the user replaced the file. If
the user cancels a save operation, the cancelled output returns
True.

— Right-click the File Dialog Express VI and select View As Icon.
Compound Arithmetic function
— Set the Mode to OR.

— Invert the bottom terminal.

The Compound Arithmetic function returns True if the user
replaces the file or does not cancel the file save operation.

Case structure

U Enqueue Element function—Add this function to the True case of

the Case structure.

tlc_Consumer Control.ctl constant—Add this constant to the
True case and set it to Save.

To Variant function—Wire the Path output of the File Dialog
Express VI to the To Variant function.

Bundle By Name function—Wire the t1c_Consumer
Control.ctl constant to the Bundle By Name function. Wire the
output of the To Variant function to the Bundle By Name function.

7-32 ni.com



Lesson 7 Implementing a Test Plan

[This loop is the producer loop. |
=f J[[5] Menu Selection (User)  ~ ]

1 "Save" 't[

File Dialog

[ 1ternTan

Figure 7-23. Producer Save Case True Case
U Clear Specific Error VI
— Add this VI to the False case of the Case structure.

— Create a numeric constant with the value of 43 and wire it to the
code input of the Clear Specific Error VI. The File Dialog
Express VI generates Error 43 if the user selects Cancel in the
File dialog box.

U Wire the queue reference through the False case.

[This loop is the producer loop. |
=} T[] Menu Selection {User)

Il 1emTan

Figure 7-24. Producer Save Case False Case

4. Save the VI.

5. Modify the Save Consumer case to perform the Save function as shown
in Figure 7-25. Use the following items:

U Variant to Data function

© National Instruments Corporation 7-33 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

U For Loop—This loop iterates through the cues in the Cue List.
U tlc_Cue Module.vi

— Add the first instance of this VI outside the For Loop and set the
command input to Get Number of Cues.

— Wire the Number of cues output to the count terminal of the For
Loop to determine the number of iterations needed to save the
Cue List data.

U tlc_Cue Module.vi

— Add the second instance inside the For Loop and set the
command input to Get Cue Values.

— Wire the iteration terminal to the Cue Index input of the cue
module to retrieve each cue in the list.

— Replace the For Loop error tunnels with shift registers.
tlc_ File Module.vi—Set the command input to Save Cues.

U Wire the Cue Output output of the cue module to the Cue Array
Input of the file module. Verify that indexing is enabled on the For
Loop tunnel.

[This loop is a consumer loop. [Save’
N
Cornmand command Cammand
- . B |oGet Mumber of Cues | | Get Cue walues =] ||| [+Save Cues |
ornrman T
F .. :,r" Data m_% FILE
P S i v =] N

Figure 7-25. Consumer Save Case

6. Save the VI.

Load

Modify the Load case in the consumer loop to open the file, extract the saved
cues, and populate the cue module with the saved cues.

1. Create the Open case in the Menu Selection (User) event case of the
producer loop, as shown in Figure 7-26. It is easiest to create the Open

LabVIEW Core 3 Exercises 7-34 ni.com



Lesson 7 Implementing a Test Plan
case by duplicating the Save case and modifying the File Dialog
Express VI.

U Delete the existing Open case of the Case structure inside the Menu
Selection (User) event case.

O Right-click the Save case and select Duplicate Case from the
shortcut menu.

1 Enter Open in the case selector label.

U Double-click the File Dialog2 Express VI to configure it. Select File
and Existing. Click OK.

U In the True case, change the t1c_Consumer Control.ctlenum
constant to Load.

[This loop is the producer loop. |

[ kermTag --------

J[[5] Menu Selection (User)  ~ ]
f["Open”_ v

™ True 't

ke _Consumer Conkral,ctl

File Dialogz

2.

© National Instruments Corporation

Figure 7-26. Producer Open Case True Case
Build the load functionality into the consumer loop.

U Open the tlc_Load VI from the Integration virtual folder and
examine how the VI operates. First, the VI loads the cues from the
specified file. Then it initializes the front panel and adds the cues
from the file to the cue module. Next, it updates the cue list and
deselects any selection in the cue list.

1 Close the VI.

Complete the Load case of the consumer loop in the TLC Main VI,
as shown in Figure 7-27. Use the following items:

U Add the Variant to Data function to the Load case.

O Add the tlc_Load VI to the Load case.

7-35 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

U Wire the data output of the Variant to Data function to the Path
input of the tlc_Load VL.

U Right-click the type input of the Variant to Data function and select
Create»Constant to create the path constant.

This loop is a consumer loop

e | "L oad”

path datatype

Cormnrmand
=
F =.. [l Datd o

Figure 7-27. Load Function

4. Save the VI.

Testing
1. Run the TLC Main VI

2. Record several cues.
3. Select File»Save from the menu.

4. Save the data file as File Test.dat in the <Exercises>\
LabVIEW Core 3 directory.

5. Select File»Exit to stop the VI.

6. Run the TLC Main VI.

7. Load File Test.dat by selecting File»Open and navigating to the
<Exercises>\LabVIEW Core 3 directory.

8. Select File»Exit to stop the VI.
@ Note If you are working through all the Lesson 7 exercises, proceed to Exercise 7-4.

End of Exercise 7-7

LabVIEW Core 3 Exercises 7-36 ni.com



Lesson 7 Implementing a Test Plan

Exercise 7-8  Self Study: Integrate Stop Function

Goal
Flush a queue to guarantee when a command is sent.
Scenario
The requirements for the application state that the user can stop a playing
cue by clicking the Stop button. This exercise implements that capability.
Design

When the user clicks the Stop button, the Event structure generates an event
to process the Stop button. To guarantee that the application responds to the
Stop button, flush the queue that controls the consumer loop to remove any
messages stored in the queue.

Make the following modifications to the TLC Main VI:

* In the producer loop, modify the Stop event case to flush the queue and
call the tlc_Timing Stop Module VIs.

* In the consumer loop, modify the Stop case to enable the front panel
controls.

Implementation

@ Note The code changes described in this exercise are integrated into the TLC Main VI
as step 1 of Exercise 7-5. This exercise describes the changes that were made to integrate
the stop function into the application. If you are working through all the Lesson 7
exercises, you should complete this exercise after Exercise 7-4.

1. Open the TLC Main VI

2. In the producer loop, add the Flush Queue function to the Stop event
case to flush the queue, as shown in Figure 7-28.

© National Instruments Corporation 7-37 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

LabVIEW Core 3 Exercises

|Ihis loop is the producer loop. |

[El

l[[2]"5top": Value Change <]

tlc_Consumer Control, ctl

o Initiglize 7] |re——

Consumet Loop Conmand

|++=kop 'H Command
Flush Queue

o] [ =
- 00 -
stop (Clear the consumer loop quewe, stop
the consumer loop, stop the timing | [ @]
ﬁ*—l—Snurce source,

Figure 7-28. Producer Stop Event Case

3. Open tlc_Stop.vi from the Integration virtual folder and examine
how the VI operates.

a

a

This VI clears any play commands that remain in the consumer
queue after the Stop case executes.

Because the consumer loop runs in parallel with the producer loop,
it is possible that the Play case of the consumer loop could enqueue
a play command after the user clicks Stop and the queue is flushed
in the producer loop.

To address this, the tlc_Stop VI previews the next queue element
without removing it. If the next element is Play, it removes the
element from the queue. If not, execution continues normally.

Close the tlc_Stop VI.

4. In the consumer loop of the TLC Main VI, modify the Stop case as
shown in Figure 7-29. This case should stop execution of the cue list and
enable the user interface controls. Use the following items:

Q

tlc_Stop.vi—This VIpreviews the next element in the consumer
queue. If the next element is a play command, then it removes that
element so the cue list execution stops completely.

tlc_Play.vi—Create the Reset True constant from the Reset
input of the tlc_Play VI. This causes the tlc_Play VI to behave as if
the cue list had completed execution. It resets all of its functional
global variables and enables the front panel controls.

7-38 ni.com



Lesson 7 Implementing a Test Plan

[This loop is a consumer loop, | BF Rl
tlc_Skop.vi
E =. Bl Command [ E eof TIC
Data
Sl T°0 4 [ |
Stop the Play module's
I I execution,
If there is a play command in
the queue, dequeue it so that
the stop completes successfully,
B= =1
-]

Figure 7-29. Consumer Stop Case

5. Save the VI.

Testing
1. Run the TLC Main VI

2. Record a cue, and play the cue. Verify that the stop functionality works
by clicking the Stop button during play.

3. Select File»Exit to stop the VI.

@ Note If you are working through all the Lesson 7 exercises, proceed to Exercise 7-5.

End of Exercise 7-8

© National Instruments Corporation 7-39 LabVIEW Core 3 Exercises



Lesson 7 Implementing a Test Plan

Notes

LabVIEW Core 3 Exercises 7-40 ni.com



Evaluating VI Performance

Exercise 8-1 Identify VI Issues with VI Metrics

Goal

Determine the complexity of the VI.

Scenario

Use VI Metrics to determine the complexity of a VI and identify issues with
the application.

Design

Run the VI Metrics tool to determine the complexity of the VI.

Implementation

1. Open the TLC Main VL.

2. Select Tools»Profile» VI Metrics.

3. In the Show statistics for section, place a checkmark in each checkbox.

Diagram

User interface
Globals/locals
CINs/shared lib calls
SubVI interface

4. Examine the metrics for the VL.

a

a

Notice that the modular approach to developing the application
results in a low max diag depth. This statistic indicates the deepest
nesting level of block diagrams in a VI. If the VI has no structures,
it has a depth of 0.

Notice the number of global and local variables that this application
uses.

5. When you finish viewing the metrics, click Done.

End of Exercise 8-1

© MNational Instruments Corporation

8-1 LabVIEW Core 3 Exercises



Lesson 8  Evaluating VI Performance

Exercise 8-2 Methods of Updating Indicators
Goal

Compare the performance of different methods for updating indicators.

Description
There are three primary methods for updating user interface values:

*  Wire data directly to an indicator—Fastest and preferred method of
passing data to the user interface.

*  Wire data to a local variable—Good method for initializing data that is
in a control.

*  Wire data to a Value Property Node of the indicator—Use this method
to update the control or indicator directly on the block diagram or in a
subVI through a control reference.

Each of these methods has performance differences. This exercise
demonstrates the performance of each of these methods.

Implementation

1. OpenMethods of Updating Indicators.vi from the
<Exercises>\LabVIEW Core 3\Methods of Updating
Indicators directory.

2. Open the block diagram and examine how this VI operates.

3. Run the VI for each of the methods by setting the Method enum, and
running the VI. Observe how long the VI takes to run for each method.

End of Exercise 8-2

LabVIEW Core 3 Exercises 8-2 ni.com



Lesson 8  Evaluating VI Performance

Notes

© National Instruments Corporation 8-3 LabVIEW Core 3 Exercises



Lesson 8  Evaluating VI Performance

Notes

LabVIEW Core 3 Exercises 8-4 ni.com



Implementing Documentation

Exercise 9-1
Goal

Document User Interface

Document the user interface.

Scenario

Document the user interface. You must document the front panel of every
VI that you create.

Design

Document the TLC Main VI. Good documentation includes a description of
the VI, and a meaningful description and tip for each control and indicator.

Implementation

1.

2.

© MNational Instruments Corporation

Open the TLC Main VL.

Select File» VI Properties and select Documentation from the
Category list. Add the following documentation to the VI description
section:

U An overview of the VI.
O Instructions for how to use the VI.
O Click OK to close the Documentation page.

Include a description for every control and indicator. Right-click the
object and select Description and Tip from the shortcut menu to create,
edit, and view object descriptions. The object descriptions appear in the
Context Help window when you idle the cursor over the object and in
any VI documentation you create.

Every control and indicator needs a description that includes the
following information:

U Functionality

U Data type

9-1 LabVIEW Core 3 Exercises



Lesson 9 Implementing Documentation

U Valid range (for inputs)
U Default value (for inputs)

You also can list the default value in parentheses as part of the
control or indicator label.

O Behavior for special values (0, empty array, empty string, and so on)

4. Save the VI.

End of Exercise 9-1

LabVIEW Core 3 Exercises 9-2 ni.com



Exercise 9-2
Goal

Scenario

Design

Implementation

Lesson 9  Implementing Documentation

Implement Documentation

Use features in LabVIEW to create professional documentation for the
application.

Documentation is an important part of developing applications that are
scalable, readable, and maintainable. Also, the end user of the application
requires documentation in order to use the system. LabVIEW assists in
developing documentation. LabVIEW can automatically generate HTML or
RTF documents that document the functionality of the application. After
LabVIEW generates the documentation, the developer can edit and expand
the documentation for other developers who maintain the application, and
for the end user.

Use the Print dialog box to generate an HTML document that you can link
to the VI Properties of the TLC Main VI.

1. Open the TLC Main VI

2. Select File»Print to open the Print dialog box.

3. Select TLC Main.vi and click Next.

4. Select VI Documentation and click Next.

5. Select Complete for the VI Documentation Style and click Next.
6. Select HTML file for the Destination and click Next.

7. Click Save.

8. Save the documentation as TLC_Main.html in the <Exercises>\
LabVIEW Core 3\Course Project\Documentation directory.

9. Select File»VI Properties and select Documentation from the
Category pull-down menu.

10. Click Browse, navigate to <Exercises>\LabVIEW Core 3\
Course Project\Documentation\TLC_Main.html and click OK
to add the path to the Help Path textbox. This loads the help HTML file
if the user clicks Detailed Help from the Context Help window.

© National Instruments Corporation 9-3 LabVIEW Core 3 Exercises



Lesson 9 Implementing Documentation

11. Click OK to close the VI Properties dialog box.

12. Save the VI.

Testing
1. Open the Context Help window.

2. Idle your mouse over the icon/connector pane of the TLC Main VI.

3. Click the Detailed help link in the Context Help window to load the
documentation for the application.

End of Exercise 9-2

LabVIEW Core 3 Exercises 9-4 ni.com



Lesson 9  Implementing Documentation

Notes

© National Instruments Corporation 9-5 LabVIEW Core 3 Exercises



Lesson 9 Implementing Documentation

Notes

LabVIEW Core 3 Exercises 9-6 ni.com



Deploying the Application

Exercise 10-1 Implementing Code for Stand-Alone
Applications

Goal

Create an About dialog box that you can use in your own applications.

Scenario

Most applications have an About dialog box that displays general
information about the application and the user or company that designed it.
You can create a VI that LabVIEW runs when a user selects Help»About to
display information about the stand-alone application you create.

When creating a stand-alone application, it is important to understand the
architecture of the Application Builder. A VI that is running as a stand-alone
executable remains in memory when the application finishes running. It is
necessary to call the Quit LabVIEW function in order to close the
application when the application finishes executing. Adding the Quit
LabVIEW function to the block diagram can make editing the application
more difficult in the future because LabVIEW quits each time the
application finishes.

You can use a Case structure and the Application:Kind property to execute
different code based on the LabVIEW instance the VI is running in,
including invalid application types. In this case, you want to call the Quit
LabVIEW function if the application is running in the LabVIEW Run-Time
Engine.

For stand-alone applications in LabVIEW, set Window Appearance to
Top-level application so that the front panel opens when the VI runs.

Design

1. Implement a dialog box VI that uses an Event structure to create an
About dialog box.

e Create a dialog box VI that closes when the user clicks the mouse
anywhere on the VI.

*  Modify the run-time menu to add the Help»About menu item.

© National Instruments Corporation 10-1 LabVIEW Core 3 Exercises



Lesson 10  Deploying the Application

2. Add a Case structure around the Quit LabVIEW function and use an
App.Kind Property Node to quit LabVIEW when the code is running in
the Run-Time Engine.

3. Modify the properties of the VI to prepare for building a stand-alone
application.

Implementation
About Dialog Box

1. Create a dialog box VI that closes when the user clicks the mouse button
anywhere on the VI.

Q Create a new VI within the TLC project.

U Select File»VI Properties and set the Window Appearance of the
VI to Dialog. Click OK.

2. Create a front panel for the VI.

@ Note The front panel window must include a National Instruments copyright notice.
Refer to the National Instruments Software License Agreement located on the LabVIEW
DVD or CD for more information about the requirements for any About dialog box you
create for a LabVIEW application.

U Add any free text or images you want to the front panel.
U Add error clusters to the front panel.

3. Switch to the block diagram and add code to close the dialog box when
the user clicks the mouse button anywhere on the VI, as shown in

Figure 10-1.
[[1]"Pane": Mouss Down ¥
I zource |
Error in (no errar) R
=2 ]

Figure 10-1. About VI Block Diagram

U Add an Event structure to the block diagram and edit an Event case
for the Mouse Down event for the <Pane> event source.

U Wire the error clusters through the Event structure.

LabVIEW Core 3 Exercises 10-2 ni.com



4.

Lesson 10 Deploying the Application

Save the VI as about.vi in the <Exercises>\LabVIEW Core 3\
Course Project directory.

@ Note You must save the About VI at the same level of the file hierarchy as the top-level
VI for the About dialog box to display when the user selects Help»About.

5.

6.

Close the About VI.

Open the TLC project. Verify that the About VI displays in the project
hierarchy at the same level as the TLC Main VI.

Save the project.

Modify the TLC Main VI so the run-time menu contains Help» About
LabVIEW. When the user selects Help»About in the stand-alone
application, the About dialog box displays. Figure 10-2 shows the
completed Run-Time Menu Editor.

13 Menu Editor - C:\Exercises\LabVIEW Core 3\Course ProjectiMenuttlc_Menu.rtm

File Edit Help

+[x] [a]=[¢]Z]

Presiem: Eile  Help

= _File
_Cpen
_Save

= _Help

Ikem Properties
Ikem Type:

Application Item |

Ikem Mame:

about LabYIEW. ..

Ikem Tag:

Enabled
Checked

Shorteut (Press key combination):

@ |

0.

© MNational Instruments Corporation

Figure 10-2. Run-Time Menu Editor

U Open the TLC Main VI. Select Edit»Run-Time Menu to open the
Menu Editor.

U Add the Help menu item by adding a User Item for Help, with the
Item Name set to _Help and the Item Tag set to Help. Use the
arrow buttons to move the entry below the other entries and in line
with File, as shown in Figure 10-2.

U Add the About LabVIEW item below the Help menu item by
selecting Edit»Insert Application Item»Help»About LabVIEW.

Save the Run-Time Menu and exit the Menu Editor.

10-3 LabVIEW Core 3 Exercises



Lesson 10  Deploying the Application

Quit LabVIEW Function

Use the Quit LabVIEW function to shutdown LabVIEW when the
application completes. You can use the Application:Kind property with a
Case structure to execute the Quit LabVIEW function only when the
application runs in the Run-Time Engine, for example, when it runs as a
stand-alone application. Implement this functionality as shown in

Figure 10-3.

Merge Errors.vi Release Queue Relsase Queus Destroy User Event
===

=N = % X
"-?!"' 1Tk -1k
e e e i

fpen errar out
X N = &pp Em?! pelboit]

App.Kind '-‘

1.

LabVIEW Core 3 Exercises

Figure 10-3. Quit LabVIEW

Create code to quit LabVIEW if the VI is running in the LabVIEW
Run-Time Engine, for example, if the VI is called as part of a shared
library or as a stand-alone executable.

a

Q

Add a Property Node to the block diagram of the TLC Main VI.

Configure the Property Node to return the value of the Application»
Kind property.

Add a Case structure to the block diagram.

U Wire the App.Kind output of the Property Node to the case selector

a

terminal of the Case structure.

Right-click the Case structure and select Add Case for Every
Value. Each case represents a different LabVIEW execution
environment.

Add the Quit LabVIEW function to the Run-Time System case.

Wire the diagram as shown in Figure 10-3. The Quit LabVIEW function
must be the last function that executes.

10-4 ni.com



Lesson 10 Deploying the Application

Window Appearance

1.

4.

Select File» VI Properties and select Window Appearance from the
Category list.

Select Top-level application window and click OK.

Enter a meaningful name for the VI in Window title or place a
checkmark in the Same as VI name checkbox.

Save the VI.

End of Exercise 10-1

© MNational Instruments Corporation

10-5 LabVIEW Core 3 Exercises



Lesson 10  Deploying the Application

Exercise 10-2 Create a Stand-Alone Application

Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Create a build specification and build a stand-alone application (EXE) in
LabVIEW.

Creating a stand-alone application is important for distributing and
deploying your application. It is also a step in the creation of a professional
installer.

Use the Application (EXE) Build Specifications to create a stand-alone
application for the Theatre Light Controller.

1. Create a stand-alone application of the Theatre Light Controller.

a

a

Open the TLC. 1vproj.

Right click Build Specifications and select New»Application
(EXE) from the shortcut menu to open the Application Properties
dialog box.

On the Information page, specify a Build specification name and
Target filename.

Set the Destination directory to <Exercises>\LabVIEW
Core 3\Course Project\Builds\Executable.

Select the Source Files page and select TLC Main.vi in the
Project Files listbox. Click the right arrow to add the VI to the
Startup VIs listbox.

Select About . vi in the project hierarchy and click the right arrow
to add the VI to the Always Included listbox.

Select the Icon page and use the Icon Editor to create a color icon
for both the 32 x 32 and 16 X 16 icons. Save the new icon in the
<Exercises>\LabVIEW Core 3\Course Project\Icons
directory.

Deselect Use the default LabVIEW Icon file and browse to the
.1co file you created.

10-6 ni.com



Lesson 10 Deploying the Application
U Select the Preview page and click Generate Preview to preview the
output of the Build Specification.

U Select the Advanced page and add a checkmark to the Copy error
code files checkbox to include the custom error code that you
developed.

4 Click OK.
2. Save the project.

3. Right-click the build specification in the project tree and select Build
from the shortcut menu.

Testing

Navigate to the directory you specified for the destination directory and run
the executable.

End of Exercise 10-2

© National Instruments Corporation 10-7 LabVIEW Core 3 Exercises



Lesson 10  Deploying the Application

Exercise 10-3 Self-Study: Create an Installer

Goal

Scenario

Design

Implementation

LabVIEW Core 3 Exercises

Create a professional installer for your application.

A professional application should always have an installer to deploy the
application. Providing an installer improves the end user experience with the
application.

Create an installer build specification for the executable you created.

Create an installer for the Theatre Light Controller.

1.

2.

Open the TLC project.

Right-click Build Specifications and select New»Installer from the
shortcut menu to open the My Installer Properties dialog box.

On the Product Information page, specify a Build specification name
and Product name.

Set the Installer destination to <Exercises>\LabVIEW Core 3\
Course Project\Builds\Installer.

Select the Source Files page and verify that a folder that matches your
project name exists under ProgramFilesFolder in Destination View. If
no folder exists for your project, add a folder and provide a meaningful
name for the folder.

In the Project View list, select the stand-alone application build
specification. Click the arrow to add the build specification to the
destination folder.

Select the Shortcuts page to edit the shortcut the installer creates in the
ProgramMenuFolder in Windows. Change the Name to Theatre
Light Controller. This places the item in the Start»Programs
menu.

Select the Additional Installers page and verify that a checkmark
appears in the checkbox for the LabVIEW Run-Time Engine installer.

Click OK.

10-8 ni.com



Lesson 10 Deploying the Application

10. Save the project.

11. Right-click the installer build specification and select Build from the
shortcut menu.

Testing
Navigate to the installer destination directory you specified and run the
installer. After the installer runs, verify the installation of the Theatre Light
Controller.
@ Note These are the ideal conditions for testing an installer. For a more accurate test,

try your installer on a computer that does not have LabVIEW installed.

End of Exercise 10-3

© National Instruments Corporation 10-9 LabVIEW Core 3 Exercises



Lesson 10  Deploying the Application

Notes

LabVIEW Core 3 Exercises 10-10 ni.com



Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW resources.

National Instruments Technical Support Options

Visit the following sections of the award-winning National Instruments
Web site at ni . com for technical support and professional services:

* Support—Technical support at ni . com/support includes the
following resources:

Self-Help Technical Resources—For answers and solutions,

visit ni.com/support for software drivers and updates,

a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs, tutorials,
application notes, instrument drivers, and so on. Registered

users also receive access to the NI Discussion Forums at
ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

Standard Service Program Membership—This program entitles
members to direct access to NI Applications Engineers via phone
and email for one-to-one technical support as well as exclusive
access to on demand training modules via the Services Resource
Center. NI offers complementary membership for a full year after
purchase, after which you may renew to continue your benefits.

For information about other technical support options in your
area, visit ni . com/services or contact your local office at
ni.com/contact.

* System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program ensures
qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit the

© MNational Instruments Corporation

A-1 LabVIEW Core 3 Exercises



Appendix A Additional Information and Resources

Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

Other National Instruments Training Courses

National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visitni . com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification

Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. Visit ni . com/training for more information about the

NI certification program.

LabVIEW Resources

This section describes how you can receive more information regarding
LabVIEW.

LabVIEW Publications

LabVIEW Core 3 Exercises

Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all the
LabVIEW books and links to places to purchase these books. Visit
zone.ni.com/devzone/cda/tut/p/id/5072 for more information.

A-2 ni.com



Course Evaluation

Course

Location

Instructor Date

Student Information (optional)

Name

Company Phone

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts O O O O O
Instructor’s knowledge of the subject matter @) O O O O
Instructor’s presentation skills O O O O O
Instructor’s sensitivity to class needs @) O O O O
Instructor’s preparation for the class O O O O O
Course

Training facility quality O O ©) O ©)
Training equipment quality @) O O O O

Was the hardware set up correctly? O Yes O No

The course length was O Too long O Justright O Too short

The detail of topics covered in the course was O Too much O Justright O Not enough
The course material was clear and easy to follow. O Yes O No O Sometimes

Did the course cover material as advertised? O Yes O No

I had the skills or knowledge I needed to attend this course. O Yes O No If no, how could you have been
better prepared for the course?

What were the strong points of the course?

What topics would you add to the course?

What part(s) of the course need to be condensed or removed?

What needs to be added to the course to make it better?

How did you benefit from taking this course?

Are there others at your company who have training needs? Please list.

Do you have other training needs that we could assist you with?

How did you hear about this course? O NI Web site O NI Sales Representative O Mailing O Co-worker
O Other







