
Concept: Comparing Queues With Local
Variables
Goal

In this exercise, you run and examine a prebuilt producer/consumer design
pattern VI that transfers data generated by the producer loop to each of the
consumer loops using local variables and queues.

Description
The files that you need to complete this exercise are here:
<NI eLearning>\LV Core 2\Queues\Exercise.

1. Open Queues vs Local Variables.vi from the <Exercise>
directory. The front panel of this VI is shown in Figure 1.

Figure 1. Front Panel of the Queues vs Local Variables VI

2. Run the VI. The producer loop generates data and transfers it to each
consumer loop using a local variable and a queue.

Concept: Comparing Queues With Local Variables

LabVIEW Core 2 2 ni.com

3. Display and examine the block diagram for this VI.

Figure 2. Block Diagram of the Queues vs Local Variables VI

Creating a Queue
The Obtain Queue function, placed to the left of the Producer Loop, creates
the queue.

The My Data string constant, wired to the name (unnamed) input of the
Obtain Queue function, assigns a name to the queue you want to obtain or
create.

The Data Type numeric constant, wired to the element data type input of the
Obtain Queue function, specifies the type of data that you want the queue to
contain.

Queuing Data Generated by the Producer Loop
The Enqueue Element function inside the Producer Loop adds each data
element generated by the Sine Wave subVI to the back of the queue.

Dequeuing Data from the Producer Loop inside the Queue's
Consumer Loop
The Dequeue Element function inside the Queue’s Consumer Loop removes
an element from the front of the queue and outputs the data element to the
Queue’s Consumer Loop waveform graph.

Concept: Comparing Queues With Local Variables

© National Instruments Corporation 3 LabVIEW Core 2

The Get Queue Status function inside the Queue’s Consumer Loop indicates
how many elements remain in the queue. In order to process these data
elements, you must execute the Queue’s Consumer Loop faster than the
Producer Loop, or continue to process after the Producer Loop has stopped.

Waiting for the Queue to Empty
The While Loop inside the Flat Sequence structure waits for the queue to
empty before stopping the VI. Refer to this While Loop as the Queue Wait
Loop.

The Get Queue Status function inside the Queue Wait Loop returns
information about the current state of the queue, such as the number of data
elements currently in the queue.

The Equal To 0? function wired to the stop condition of the Queue Wait
Loop checks if the queue is empty.

The Release Queue function to the right of the Queue Wait Loop releases
and clears reference to the queue.

The Simple Error Handler to the right of the Release Queue function reports
any error at the end of execution.

Local Variable's Consumer Loop
The Producer Loop generates sine wave data and writes it to a local variable
while the Local Variable’s Consumer Loop periodically reads out the sine
wave data from the same local variable. The Points Difference VI inside the
Local Variable’s Consumer Loop outputs the number of missed points or
number of duplicate points read out.

Switch to the front panel of this VI.

1. Select the loop time speed of the Local Variable’s Consumer Loop and
observe the Local Variable’s Consumer Loop waveform graph and the
results generated on the Duplicate Points indicator.

❑ Ensure that the Loop Speed selected is Same as Producer Loop and
observe the waveform graphs for both the Producer Loop and the
Local Variable’s Consumer Loop. A race condition may occur
resulting in missed points or duplicated data.

❑ Select Maximum Speed from the pull-down menu of the Loop
Speed control and observe the waveform graph of the Local
Variable’s Consumer Loop. A race condition occurs because data is
consumed faster than it is produced, allowing the local variable to
read the same value multiple times.

Concept: Comparing Queues With Local Variables

LabVIEW Core 2 4 ni.com

❑ Select 1/2 as Producer from the pull-down menu of the Loop Speed
control and observe the waveform graph of the Local Variable’s
Consumer Loop. A race condition occurs because data is produced
faster than it is consumed. The data changes before the local variable
has a chance to read it.

❑ Select the remaining options available from the pull-down menu of
the Loop Speed control and observe the data retrieval.

2. Stop the VI.

Data transfer between two non-synchronized parallel loops using local
variables causes a race condition. This occurs when the Producer Loop
is writing a value to a local variable while the Local Variable’s
Consumer Loop is periodically reading out the value from the same
local variable. Because the parallel loops are not synchronized, the value
can be written before it has actually been read or vice-versa resulting in
data starvation or data overflow.

Queue's Consumer Loop
1. Run the VI. Select the loop time speed of the Queue’s Consumer Loop

and observe the Queue’s Consumer Loop waveform graph and the
results generated on the # of elements in queue indicator.

❑ Ensure that the Loop Speed selected is Same as Producer and
observe the value of the # of elements in queue indicator. The value
should remain zero. Hence with queues, you will not lose data when
the producer and consumer loops are executing at the same rate.

❑ Select Maximum Speed from the pull-down menu of the Loop
Speed control and observe the value of # of elements in queue. The
value should remain zero. Hence with queues, you will not lose data
if the consumer loop is executing much faster than the producer
loop.

❑ Select 1/2 as Producer from the pull-down menu of the Loop Speed
control and observe the value of # of elements in queue. The data
points will accumulate in the queue. You will need to process the
accumulated elements in the queue before reaching the maximum
size of the queue to avoid data loss.

❑ Select the remaining options available from the pull-down menu of
the Loop Speed control and observe the synchronization of data
transfer between the producer loop and the consumer loop using
queues.

Concept: Comparing Queues With Local Variables

© National Instruments Corporation 5 LabVIEW Core 2

2. Stop the VI.

When the Producer Loop and Queue’s Consumer Loop run at the same
speed, the number of elements in the queue remains unchanged. When
the Queue’s Consumer Loop runs slower, the queue quickly backs up
and the Producer Loop must wait for the Queue Consumer Loop to
remove the elements. When the Queue’s Consumer Loop runs faster, the
queue is quickly emptied and the consumer loop must wait for the
Producer loop to insert elements. Hence queues synchronize the data
transfer between the two independent parallel loops and thus avoid loss
or duplication of data.

3. Close the VI. Do not save changes.

End of Exercise

Concept: Comparing Queues With Local Variables

LabVIEW Core 2 6 ni.com

Notes

	Concept: Comparing Queues With Local Variables
	Goal
	Description
	Figure 1. Front Panel of the Queues vs Local Variables VI
	Figure 2. Block Diagram of the Queues vs Local Variables VI
	Creating a Queue
	Queuing Data Generated by the Producer Loop
	Dequeuing Data from the Producer Loop inside the Queue's Consumer Loop
	Waiting for the Queue to Empty
	Local Variable's Consumer Loop
	Queue's Consumer Loop

