
Concept: Refactoring a VI
Goal

Improve an existing VI that is poorly designed.

Description
You receive a VI that is used as a subVI in a larger project. You must
improve the VI for readability and user friendliness.

Evaluate the VI
The files that you need to complete this exercise are here:
<NI eLearning>\LV Core 2\Refactoring Issues\Exercise.

1. Open the Determine Warning Bad One.vi located in the
<Exercise> directory. Figure 1 shows the block diagram of this VI.

❑ Run this VI with a variety of input values and observe the varying
warning text.

2. Use the following list to evaluate the VI. Place a checkmark for all issues
that apply.

❑ Disorganized block diagram

❑ Overly large block diagram

❑ Poorly named objects and poorly designed icons

❑ Unnecessary logic

❑ Duplicated logic

❑ Lack of dataflow programming

❑ Complicated algorithms

Concept: Refactoring a VI

LabVIEW Core 2 2 ni.com

Figure 1. Poorly Designed Block Diagram

Improve the VI
Improve the VI in stages. Begin with the first checkmark: The block
diagram is too disorganized.

1. Use the following tips to help you organize the block diagram:

Figure 2. Reorganized Block Diagram

❑ Move all controls to the left of the block diagram.

❑ Move all indicators to the right of the block diagram.

❑ Use the Align Objects and Distribute Objects toolbar buttons
toarrange the controls and indicators.

Concept: Refactoring a VI

© National Instruments Corporation 3 LabVIEW Core 2

❑ Rearrange wires so that they do not overlap.

❑ Rearrange wires so that no input wires are running from right to left.

❑ Reduce the number of bends in wires.

❑ Do not allow wires to run under objects.

2. After the block diagram is better organized, rename controls and
indicators using names that are more descriptive.

• The purpose of this VI is to determine whether the current
temperature and wind speed are at a level requiring a warning to
generate. The VI also lights an LED if a warning occurs.

• Suggested input names are Current Temperature, Low Temp,
High Temp, Current Wind Speed, and High Wind Speed.

• Suggested output names are Warning Text and Warning?.

3. Remove any unnecessary logic from the block diagram.
Figure 3 shows the last few functions in the block diagram.

Figure 3. Unnecessary Logic

Notice that the Equal? function is followed by a Not function. One approach
is to replace this with a Not Equal? function as shown in Figure 4.

Figure 4. Unnecessary Logic Simplified

Concept: Refactoring a VI

LabVIEW Core 2 4 ni.com

Notice you can reduce unnecessary logic even further by removing the Not
Equal? function and inverting the Boolean input of the Select function, as
shown in Figure 5.

Figure 5. Unnecessary Logic Simplified Further

Refer to Figure 6 for assistance with wiring this duplicated function that
occurs near the end of the VI.

❑ Delete the Equal? function.

❑ Delete the input wire to the Not function.

❑ Wire the input of the Not function to the input wire of the Select
function.

❑ Test the edited VI to be sure the functionality has not changed.

Figure 6. Well-Named Controls and Unnecessary Logic Removed

4. Save the VI as Determine Warnings Good One.vi.

Concept: Refactoring a VI

© National Instruments Corporation 5 LabVIEW Core 2

Optional

1. Replace duplicated logic on the block diagram with subVIs. Figure 7
shows an example of the algorithm in the VI that is repeated. You can
replace this algorithm with a subVI.

Figure 7. Repeated Algorithm

❑ Select the repeated algorithm by drawing a selection box around the
objects.

❑ Select Edit»Create SubVI.

❑ Double-click the new subVI to open it.

❑ Edit the new subVI as necessary. Some things to consider: create an
appropriate icon, recreate the connector pane, and rename the
controls and indicators.

❑ Save the subVI.

❑ Close the subVI.

Note If the subVI is dimmed, right-click the subVI icon on the block diagram and select
Relink to SubVI from the shortcut menu.

❑ Delete the duplicated logic in other locations and replace with the
new subVI.

❑ Test the edited VI.

Concept: Refactoring a VI

LabVIEW Core 2 6 ni.com

2. Remove unnecessary local variables and wire to the appropriate control
or indicator instead.

Figure 8. Duplicated Logic Placed in a SubVI and Local Variables Removed

3. Save the VI as Determine Warnings Good One.vi.

Concept: Refactoring a VI

© National Instruments Corporation 7 LabVIEW Core 2

Challenge: Simplify Algorithm
If you have time remaining in this exercise, try to determine a way to
simplify the algorithm and rewrite the code so that is easier to modify later.

An example solution is shown in Figure 9 using a state machine. The states
contained are: Heatstroke, Freeze, High Wind, and Generate Warning. You
can explore alternate solutions in the <Exercise>\Challenge directory.

Figure 9. Alternate Algorithm that is Readable and Maintainable

End of Exercise

Concept: Refactoring a VI

LabVIEW Core 2 8 ni.com

Notes

